
Background and objective Sufficient conditions for stable local limit theorem Summary

Local limit theorem in
non-Gaussian quasi-likelihood inference

Hiroki Masuda

Kyushu University

SAPS XI St Petersburg July 19, 2017

1 Background and objective

2 Sufficient conditions for stable local limit theorem

3 Summary

Hiroki Masuda (Kyushu Univ.) Stable local limit theorem in SDE inference Jul 19, 2017 1 / 14



Background and objective Sufficient conditions for stable local limit theorem Summary

1 Background and objective

2 Sufficient conditions for stable local limit theorem

3 Summary

NYSE: IBM stock data ( c⃝CREST JST)

0

2

4

6

8

−0.50 −0.25 0.00 0.25 0.50

diff

d
e
n
s
it
y

linetype

hyperbolic

normal

fill

histogram

Density fits: hyperbolic vs normal

0

500

1000

1500

−0.002 −0.001 0.000 0.001 0.002

diff

d
e
n
s
it
y

linetype

normal

stable

fill

histogram

Density fits: stable vs normal

Hiroki Masuda (Kyushu Univ.) Stable local limit theorem in SDE inference Jul 19, 2017 2 / 14



Background and objective Sufficient conditions for stable local limit theorem Summary

Primary objective: L1-local limit theorem

Standard β-stable Lévy process J = (Jt): L(J1) = Sβ , i.e.

E
(
eiuJt

)
= e−t|u|

β

= exp

(
t

∫
(cos(uz)− 1)

cβ
|z|β+1

dz

)
▶ Scaling property: h−1/βJh ∼ Sβ , smooth density ϕβ

Locally (small-time) standard β-stable Lévy process J = (Jt):

L(h−1/βJh) ⇒ Sβ , h→ 0

▶ L(h−1/βJh) admits a b’dd. conti. density fh (Bertoin and Doney, 1997)

▶ Roughly, e.g. the Lévy density: z 7→ cβ
|z|β+1

{1 + o(1)} for |z| → 0

Easy conditions for “ lim
h→0

1√
h

∫
|fh(y)− ϕβ(y)|dy = 0” ?
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Why?

Inference for SDE from high-frequency data

dXt = a(Xt, α)dt+ c(Xt−, γ)dJt

Estimate true θ0 = (α0, γ0) from (Xtj )
n
j=0, where tj = jhn, hn := T/n

J is a locally β-stable pure-jump (1 ≤ β < 2) Lévy process

▶ Small-time non-Gaussian, infinite-activity and/or infinite-variation character

Technical merits
▶ Consistent estimation of stochastic location-scale structure over fixed time domain
▶ Sidestep most stability constraints: stationarity, ergodicity, finite variance, ...
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Stable quasi-likelihood: heuristic

Euler (small-time) approximation:

∆jX := Xtj −Xtj−1

Pθ=

∫ tj

tj−1

a(Xs, α)ds+

∫ tj

tj−1

c(Xs−, γ)dJs

Pθ≈ a(Xtj−1 , α)hn + c(Xtj−1 , γ)(Jtj − Jtj−1)

=: aj−1(α)hn + cj−1(γ)∆jJ

ϵnj(θ) :=
∆jX − aj−1(α)hn

h
1/β
n cj−1(γ)

∼ i.i.d. Sβ , approximately

Stable Quasi-Maximum Likelihood Estimator θ̂n = (α̂n, γ̂n); SQMLE

θ̂n = (α̂n, γ̂n) ∈ argmax
θ∈Θ

n∑
j=1

log

{
1

h
1/β
n cj−1(γ)

ϕβ

(
ϵnj(θ)

)}
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Asymptotic mixed normality of SQMLE

dXt = a(Xt, α)dt+ c(Xt−, γ)dJt, (XjT/n)
n
j=0

Theorem. Under some assumptions (β ≥ 1; next slide),(
n1/β−1/2(α̂n − α0)√

n(γ̂n − γ0)

)
L−→ MN

(
0, diag[ΣT,α(θ0)

−1,ΣT,γ(θ0)
−1]

)
ΣT,α(θ0) := T 2(1−1/β) 1

T

∫ T

0

{∂αa(Xt, α0)}⊗2

c(Xt, γ0)2
dt ·

∫ {∂ϕβ(y)}2

ϕβ(y)
dy,

ΣT,γ(θ0) :=
1

T

∫ T

0

{∂γc(Xt, γ0)}⊗2

c(Xt, γ0)2
dt ·

∫ {ϕβ(y) + y∂ϕβ(y)}2

ϕβ(y)
dy

▶ Masuda, H. (2017), Non-Gaussian quasi-likelihood estimation of SDE driven
by locally stable Lévy process. arXiv:1608.06758 (v3)

▶ Asymptotically efficient in several cases (maybe in general).
⋆ Locally stable Lévy process: Ivanenko, Kulik and M (2015)
⋆ SDE: Clément and Gloter (2015); Clément, Gloter and Nguyen (2017)
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Assumptions

dXt = a(Xt, α)dt+ c(Xt−, γ)dJt, (XjT/n)
n
j=0

1 Regularity of the coefficients

▶ (a, c) smooth enough, with a(·, α0) and c(·, γ0) globally Lipschitz.
▶ ∃K ≥ 0, ∀x, sup

γ
|c(x, γ)|−1 ≤ K(1 + |x|)K

2 Identifiability

▶ Pθ0

{(
a(Xt, α)
c(Xt, γ)

)
t≤T

=

(
a(Xt, α0)
c(Xt, γ0)

)
t≤T

}
= 1 ⇒ θ = θ0

3 Driving-noise structure for the pdf fh of L(h−1/βJh)

▶ 1 ≤ β < 2

▶ ∃ϵ > 0,

∫
|y|β−ϵ|fh(y)− ϕβ(y)|dy → 0

▶
√
n

∫
|fh(y)− ϕβ(y)|dy → 0 for the pdf fh of L(h−1/βJh)
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How to verify in an easy manner?:

▶ ∃ϵ > 0,

∫
|y|β−ϵ|fh(y)− ϕβ(y)|dy → 0

▶
√
n

∫
|fh(y)− ϕβ(y)|dy → 0

Here we forget that 1 ≤ β < 2, required to handle Euler-approx. error.
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Sufficient conditions I

(L) J ’s Lévy measure ν(dz) = g(z)dz for a symmetric g s.t.

▶ g(z) =
cβ

|z|β+1
{1 + ρ(z)} (z ̸= 0);

▶ ∃δ, ϵρ > 0, ∃cρ ≥ 0, ∀|z| ∈ (0, ϵρ], |ρ(z)| ≤ cρ|z|δ

(L) + sup
z

|ρ(z)| < ∞ ⇒ ∃ϵ > 0,

∫
|y|β−ϵ|fh(y)− ϕβ(y)|dy → 0

(G1) ρ ∈ C1(R \ {0}) and the pair (cρ, β, δ) satisfies either
▶ cρ = 0, or
▶ cρ > 0 and δ > β with |ρ(z)|+ |z∂ρ(z)| ≤ cρ|z|δ (z ̸= 0)

(L) + (G1) + supp(g) ⊂ [−K,K] (∃K > 0) ⇒
√
n

∫
|fh(y)− ϕβ(y)|dy → 0

Additional conditions on ρ lose no generality through the localization.
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Sufficient conditions II

(L) J ’s Lévy measure ν(dz) = g(z)dz for a symmetric g s.t.

▶ g(z) =
cβ

|z|β+1
{1 + ρ(z)} (z ̸= 0);

▶ ∃δ, ϵρ > 0, ∃cρ ≥ 0, ∀|z| ∈ (0, ϵρ], |ρ(z)| ≤ cρ|z|δ

(G2) ψh ∈ C1(R \ {0}), and for ψh(u) := h logE(eiuh
−1/βJh) and φ0(u) := e−|u|β :

▶ ∃cψ ≥ 0, |∂uψh(u)| ≲
1

u
∨ ucψ (u > 0);

▶ ∃ϵψ(h) → 0, ∃r ∈ [0, 1] s.t.

⋆
∫
(0,∞)

urφ0(u)
∣∣∣∂uψh(u) + βuβ−1

∣∣∣ du ≤ ϵψ(h)

⋆
√
n(ϵψ(h) ∨ haν )

β
β+r → 0 for aν :=

{
1 (cρ = 0)

(δ/β) ∧ 1 (cρ > 0).

(L) + (G2) + supz |ρ(z)| < ∞ ⇒
√
n

∫
|fh(y)− ϕβ(y)|dy → 0
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Two examples satisfying “(L) & (G2)”, but not “(L) & (G1)”

Exponentially tempered stable with index β ∈ [1, 2):

ψh(u) =


1

π

{
λh log

(
1 +

u2

λ2h2

)
− 2u arctan

(
u

λh

)}
(β = 1)

2cβΓ(−β)
[
(λ2h2/β + u2)β/2 cos

{
β arctan

(
u

λh1/β

)}
− λβh

]
(β ∈ (1, 2))

▶
∫
(0,∞)

φ0(u)|∂uψh(u) + βuβ−1|du ≲ h1∧(1/β) = h1/β

Generalized hyperbolic (β = 1) except for the variance gamma:

∂uψh(u) + 1 = 1− u√
(ηh)2 + u2

Kλ+1

Kλ

(
1

h

√
(ηh)2 + u2

)

▶
∫
(0,∞)

φ0(u) |∂uψh(u) + 1| du ≲
{
h log(1/h) (λ ̸= −1/2)

h (λ = −1/2 : NIG case)
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Summary

dXt = a(Xt, α)dt+ c(Xt−, γ)dJt, (XjT/n)
n
j=0

L(h−1/βJh) ⇒ Sβ

Sufficient conditions for the local limit theorems (1 ≤ β < 2):

▶ ∃ϵ > 0,

∫
|y|β−ϵ|fh(y)− ϕβ(y)|dy → 0

▶
√
n

∫
|fh(y)− ϕβ(y)|dy → 0 for the pdf fh of L(h−1/βJh)

In terms of either
▶ Lévy density g(z) of J , or

▶ Lévy-Khintchine exponent u 7→ h logE(eiuh
−1/βJh)

For verifying the key assumptions in quasi-likelihood inference for (α, γ).
▶ Local limit results + Coefficients’ regularity ⇒ Asymptotic mixed normality
▶ No moment conditions and no ergodicity
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