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Motivation

□ Lead-lag effect

• Two time series are cross-correlated with each other at
certain lags; “leader” and “lagger”

□ In financial markets, lead-lag effects may occur perhaps
because new information is absorbed into each security at
different speeds

• Across different assets

• Across different trading venues
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Motivation

□ Ex1: Stock index vs index futures (e.g. Kawaller et al., 1987)

• A stock index consists of many individual stocks; it may be
lagging behind the index futures

□ Ex2: Large stocks vs smaller stocks (e.g. Lo and MacKinlay,
1990)

• Large stocks are traded more frequently than smaller
stocks, so the former may absorb new information faster
than the latter
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Ex3: One security traded at multiple venues
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□ Due to the low-latency trading of the recent financial markets,
lead-lag effects only appear in a very short period (Tóth and
Kertész, 2006)

⇒We need to utilize high-frequency data

□ Hoffmann, Rosenbaum and Yoshida (2013) have proposed a
model for lead-lag effects in high-frequency financial data
(“HRY model”)

• Its practicality in empirical work has recently been
established by several authors such as Alsayed and
McGroarty (2014), Huth and Abergel (2014), Bollen et al.
(2017) and Iacus et al. (2015)

6



□ These empirical studies show that time lag parameters are
typically comparable to the observation frequencies in their
scales

□ This motivates us to study the HRY model with a “small”
lead-lag effect

• In particular, we are interested in how small lag parameters
can be identified in principle

□ However, there is few theoretical study for the HRY model
and, in particular, nothing has been known about the
optimality of statistical inferences for the HRY model

□ Aim of this study fill in this gap
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Model

□ Bt = (B1
t , B

2
t ) (t ∈ R): bivariate two-sided Brownian motion

(latent process)

• B0 = 0, E[(B1
1)2] = E[(B2

1)2] = 1 and E[B1
1B2

1] = ρ , 0

• ρ ∈ (−1, 1): correlation parameter

□ ϵk
1 , ϵ

k
2 , . . . (k = 1, 2): innovations of observation noise

• ϵk i.i.d.∼ N (0, 1)

• ϵ1 and ϵ2 are mutually independent

8



Model

□ Observation data Zn = (X1, . . . , Xn,Y1, . . . , Yn)⊤ Xi = B1
i/n +

√
vnϵ

1
i , Yi = B2

i/n−ϑ +
√
vnϵ

2
i if ϑ ≥ 0,

Xi = B1
i/n−|ϑ| +

√
vnϵ

1
i , Yi = B2

i/n +
√
vnϵ

2
i if ϑ < 0

• ϑ ∈ R: time-lag parameter

• vn ≥ 0: variance of the observation noise (assume
lim supn vn < ∞)

□ The case vn ≡ 0 corresponds to (a special case of) the HRY
model
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Model

□ We also consider a noisy observation case due to its
importance in high-frequency financial modeling (“market
microstructure noise”)

□ We denote by Pn,ϑ the distribution of Zn

• Pn,ϑ is defined on (R2n,B2n)

• B2n denotes the Borel σ-field of R2n
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Model

□ Aim of this study Investigating the asymptotic structure of the
experiments Pn,ϑ when the lag parameter ϑ is small (i.e. when
ϑ→ 0 as n→ ∞)

□ More precisely, for a sequence ϑn tending to 0 with the
“appropriate” rate, we study the asymptotic behavior of the
likelihood ratios dPn,ϑn/dPn,0

□ This serves as investigating the asymptotic efficiency of the
statistical inference for the lag parameter ϑ when it is small
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Main results

□ We assume that the existence of the limit

γ = lim
n→∞

nvn ∈ [0,∞]

□ Since E[(Bk
i/n − Bk

(i−1)/n)2] = 1/n,

• γ = ∞⇒ The observation noise (locally) dominates the
latent process

• 0 < γ < ∞⇒ The latent process and the observation
noise are balanced

• γ = 0⇒ The latent process dominates the observation
noise
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Main results

□ We define the sequence Nn of positive numbers by

Nn =


√

n/vn if γ = ∞,
n otherwise

□ Nn could be regarded as an “effective” sample size in the
following sense:
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Main results

□ For a standard Brownian motion B = (Bt)t∈[0,1], the optimal
convergence rate to estimate the scale parameter σ > 0 from
the observation data

σBi/n +
√
vnϵi, ϵi

i.i.d.∼ N(0, 1)⊥⊥ B

is given by N−1/2
n (Gloter and Jacod, 2001)

□ The rate N−1/2
n can be seen as the regular parametric rate if

we regard Nn as the sample size
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Theorem 1� �
Set rn = N−3/2

n . There are random variables Tn and Sn defined
on (R2n,B2n) and two numbers Iγ > 0 and Jγ ≥ 0 such that

log
dPn,rnun

dPn,0
−

{
unTn + |un|Sn −

u2
n

2
(Iγ + Jγ)

}
p
−→ 0

under Pn,0 as n→ ∞

for any bounded sequence un of real numbers and

(Tn,Sn)
d−→ N (0, Iγ) ⊗N (0, Jγ) under Pn,0 as n→ ∞.� �
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□ Iγ and Jγ are defined as follows:

Iγ =



ρ2

1−ρ2 if γ = 0,
ρ
(√

(1+ρ)(1+ρ+4γ)−
√

(1−ρ)(1−ρ+4γ)
)

4γ2 if 0 < γ < ∞,
ρ2√

1+ρ+
√

1−ρ
if γ = ∞,

Jγ =
ρ2

8 {J0
γ(1 + ρ) + J0

γ(1 − ρ)}

Here, for every a > 0 we set

J0
γ(a) =


3

2a2 if γ = 0,
1

8γ2

(
2 − 3

(
a

a+4γ

)1/2
+

(
a

a+4γ

)3/2
)

if 0 < γ < ∞,

0 if γ = ∞.
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□ From Theorem 1, when γ = ∞ (the case that the observation
noise is locally dominant), (Pn,ϑ)ϑ∈R enjoys the LAN property
at ϑ = 0

□ Otherwise, our experiment exhibits an asymptotic structure
different from the LAN

□ This is a typical phenomenon for irregular models, but our
situation is different from the “common” irregular models
(cf. Chapters 5–7 of Ibragimov and Has’minskii (1981)) in the
following sense:

• The rate N−3/2
n is faster than the “common” rate N−1

n

• The asymptotic structure seems different from those of any
other known irregular models
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Efficient estimation of the lag parameter

□ We construct efficient estimators for the lag parameter at
ϑ = 0 in the case of γ < ∞

□ As stated above, in this case our model does not have the
LAN property, so it is not obvious how to define the
asymptotically efficient estimators

□ Here, following Küchler and Kutoyants (2000), we define the
asymptotic efficiency by utilizing the minimax inequality
obtained from Theorem I-9.1 of Ibragimov and Has’minskii
(1981):

18



Ibragimov and Has’minskii (1981), Theorem I-9.1� �
Let Θ be a compact subset of Rk. For each n, let (Pn,θ)θ∈Θ be a
family of probability distributions dominated by a σ-finite mea-
sure. Also, let rn be a sequence of positive numbers tending to
0 and L : Θ → [0,∞) be a continuous function. Suppose that
for any interior point u of Θ and any prior density q on Θ such
that q(u) > 0, the posterior mean θ̃n with respect to q satisfies

lim
n→∞

En,u[|r−1
n (θ̃n − u)|2] = L(u).

Then, for any open set U ⊂ Θ and any estimator sequence θ̂n,

lim inf
n

sup
θ∈U

En,θ[|r−1
n (θ̂n − θ)|2] ≥ sup

u∈U
L(u).

� �
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Efficient estimation of the lag parameter

□ Taking a sequence ηn of positive numbers tending to 0, we
apply the above theorem with Pn,θ = Pn,θηn and Θ = [−1, 1]

□ We consider a (local) Bayes estimator: taking a prior density
qn on [−ηn, ηn], we define the Bayes estimator ϑ̃n by

ϑ̃n =

∫ ηn

−ηn

ϑ
dPn,ϑ

dPn,0
qn(ϑ)dϑ

/∫ ηn

−ηn

dPn,ϑ

dPn,0
qn(ϑ)dϑ
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Theorem 2� �
Suppose that ηn = o(n−1) and n3/2ηn → ∞. Also, suppose that
there is a continuous function q : [−1, 1] → (0,∞) such that
qn(ϑ) = q(ϑ/ηn) for ϑ ∈ [−ηn, ηn]. Then, there is a random
variable ũ such that n3/2(ϑ̃n − ϑn) converges in distribution to ũ
under Pn,ϑn for any sequence ϑn ∈ (−ηn, ηn). Moreover, ϑ̃n is
asymptotically efficient at ϑ = 0 in the following sense: for any
estimator sequence ϑ̂n, it holds that

lim
δ→0

lim inf
n

sup
|ϑ|<δηn

En,ϑ[n3|ϑ̂n − ϑ|2] ≥ E[ũ2].

� �
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Efficient estimation of the lag parameter

□ ũ can be explicitly defined as follows:

ũ =

∫ ∞
−∞ uZ(u)du∫ ∞
−∞ Z(u)du

,

where

Z(u) = exp
(
uζ1 + |u|ζ2 −

u2

2
(Iγ + Jγ)

)
, u ∈ R,

with ζ1 and ζ2 being two mutually independent variables such
that ζ1 ∼ N (0, Iγ) and ζ2 ∼ N (0, Jγ)
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Efficient estimation of the lag parameter

□ Another natural candidate of the estimators is the MLE

□ We define the (local) MLE as

ϑ̂n = arg max
ϑ∈(−ηn,ηn)

dPn,ϑ

dPn,0

□ The limiting variable of the MLE can be explicitly written as
follows:

û = arg max
u∈R

Z(u) =


(ζ1 + ζ2)/(Iγ + Jγ) if ζ1 ≥ (−ζ2) ∨ 0,

(ζ1 − ζ2)/(Iγ + Jγ) if ζ1 < ζ2 ∧ 0,

0 otherwise
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Efficient estimation of the lag parameter

Theorem 3� �
Suppose that ηn = o(n−1) and n3/2ηn → ∞. Then, n3/2(ϑ̂n − ϑn)
converges in distribution to û under Pn,ϑn for any sequence ϑn ∈
(−ηn, ηn).� �
□ We naturally ask the following question: How is the MLE

inefficient compared with the Bayes estimators?

□ To answer this question, we compute their asymptotic
variances
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Theorem 4� �
It holds that

E
[
û2

]
=

1
Iγ + Jγ

1 − 1
π

arctan


√

Jγ
Iγ

 +
√

IγJγ
π(Iγ + Jγ)

 ,
E

[
ũ2

]
=

1
Iγ + Jγ

∫ ∞

−∞

∫ ∞

−∞

(
xΨ(x) − yΨ(y)
Ψ(x) + Ψ(y)

)2

ψR(x, y)dxdy,

where Ψ(x) =
∫ ∞

0 eux−u2/2du and ψR(x, y) denotes the bivariate
normal density with standard normal marginals and correlation
R = (Jγ − Iγ)/(Jγ + Iγ).� �
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Efficient estimation of the lag parameter

□ Although we have analytic expressions of the asymptotic
variances of the MLE and the Bayes estimators, it is not easy
to quantify how different they are.

□ However, if γ = 0, we can easily check

lim
|ρ|→1

E
[
ũ2

]
/E

[
û2

]
= 0,

hence the Bayes estimator can be much better than the MLE

□ In the following we numerically evaluate the above
expressions for ρ = 0.001, 0.01, 0.1, 0.2, . . . , 0.8, 0.9, 0.99, 0.999
and γ = 0, 0.1, 1
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Conclusions

□ We have derived the asymptotic property of the likelihood ratio
of Brownian motion model with a small lead-lag structure

• If the observation noise is dominant, the LAN property
holds true

• Otherwise, a non-standard asymptotic structure appears

□ We have shown that the Bayes estimators are asymptotically
efficient by utilizing the Ibragimov-Has’minskii theory
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Future work

□ Non-small lead-lag times

• When γ < ∞, the asymptotic structure seems to depend on
the limit of the fractional part of nϑ

□ More general situations including stochastic volatilities as well
as irregular and non-synchronous sampling times

□ Construct more realistic estimators

• Non-local, estimate the time-lag, correlation and volatilities
simultaneously
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Key idea of the proof

□ Although our model is Gaussian, it is not easy to directly
analyze the model because its covariance matrix is a
complicated function of ϑ

□ For this reason we introduce an auxiliary model which is more
tractable than the original model

□ For each n ∈ N, set

Θn = {ϑ ∈ R : vn − nϑ2 + |ϑ| ≥ 0}

= {ϑ ∈ R : |ϑ| ≤ (1 +
√

1 + 4nvn)/(2n)}
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Key idea of the proof

□ For each ϑ ∈ Θn we denote by P̃n,ϑ the law of the vector
Z̃n = (X̃1, . . . , X̃n, Ỹ1, . . . , Ỹn)⊤ defined by

X̃i = B1
i/n + ϵ̃

1
i , Ỹi = B2

i/n + ϵ̃
2
i ,

where ϵ̃1
i,n = ϵ

1
i , ϵ̃2

i,n = −nϑ(B2
i/n − B2

(i−1)/n) +
√
vn − nϑ2 + ϑϵ2

i if ϑ ≥ 0,

ϵ̃1
i,n = −n|ϑ|(B1

i/n − B1
(i−1)/n) +

√
vn − nϑ2 + |ϑ|ϵ1

i , ϵ̃2
i,n = ϵ

2
i if ϑ < 0

for i = 1, . . . , n
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Key idea of the proof

□ We can show that the model Pn,ϑ is well-approximated by P̃n,ϑ

in the Hellinger distance

□ The Hellinger distance H(P,Q) between two probability
measures P and Q on a measurable space (X ,A) is defined
by

H(P,Q) =


∫
X


√

dP
dµ
−

√
dQ
dµ


2

dµ


1/2

,

where µ is a σ-finite measure dominating both P and Q
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Proposition 1� �
If a sequence ϑn of positive numbers satisfies ϑn = o(n−1 ∨
N
− 4

3
n ) as n→ ∞, then sup|ϑ|≤ϑn

H(Pn,ϑ, P̃n,ϑ)→ 0� �
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Key idea of the proof

□ Let us remark the following inequality:

∥P − Q∥ ≤ H(P,Q)

for two probability measures P and Q on a measurable space
(X ,A), where we set ∥µ∥ = sup f :| f |≤1 |

∫
f dµ| for a signed

measure µ on (X ,A)

□ The next result shows that the asymptotic structures of Pn,ϑ

and P̃n,ϑ are identical for sufficiently small ϑ:

39



Le Cam (1986), Chapter 4, Proposition 2� �
Let (P1, P2) and (Q1,Q2) be two pairs of positive measures on
the measurable space (X ,A). Then∫ {

1 ∧
∣∣∣∣∣dP2

dP1
− dQ2

dQ1

∣∣∣∣∣} d(P1 + Q1)

≤ ∥P1 − Q1∥ + 2∥P2 − Q2∥ +
√

2∥P1 − Q1∥∥P2 + Q2∥.� �
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□ From an econometric point of view, Proposition 1 is of
independent interest since the auxiliary model P̃n,ϑ has an
economic interpretation different from the original model Pn,ϑ

□ The model P̃n,ϑ contains measurement errors correlated to the
latent returns Bi/n − B(i−1)/n

• In the market microstructure theory, such a correlation is
often explained as an effect of asymmetric information
(e.g. Glosten, 1987)

• Some economic arguments suggest that such an
information asymmetry would cause a lead-lag effect; see
Chan (1993) and Chordia et al. (2011) for instance
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