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Upper functions of stochastic processes

Let Y:, t > 0, be a scalar stochastic process defined on a complete
probability space {Q, F, P}.

Next we adopt a slightly modified definition of upper function from
[GikhSkor, p. 289]:

Definition 1

A non-random function h; > 0, t > 0, is called an upper function of Y; if

Y,
lim sup —t <0 holds with probability 1. (1)

t—o00 ht

From (1) = there exist a constant ¢y > 0 and an a.s. finite moment ty:

Y: < cghy a.s. for any t > ty.
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Law of iterated logarithm for Brownian motion =

he =Vtinlnt  for Y; = ||w|

(wt is a multidimensional BM, || - || is the Euclidean norm)

Upper functions

— provide a.s. deterministic upper bounds on stochastic processes
(asymptotically)

if hy — 0, t — oo, then limsup Y; <0 as.

t—o0

— are used to obtain normalizing functions g; : limsup(Y:/g:) <0 a.s.
t—o0

gt > 0,t > 0, is any function such that
tIL[TQ]o(ht/gt) =0 holds.

In this work we derive upper functions of Y; = || X;||?, where X;,t >0, is
a solution to linear SDE with non-exponentially stable state matrix.
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Let X;,t > 0, be an n-dimensional stochastic process defined on a
stochastic basic by

dXt:AtXtdt+ Gdet7 X():X,

oo

where Ay, G; are known non-random matrices, [ [|G¢||>dt > 0;
0

we, t > 0, — is a d-dimensional Brownian motion;

X is a non-random vector.

We will assume that the matrix A; is non-exponentially stable,
characterizing this property by a stability rate.
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Let ®(t,s) be the fundamental matrix corresponding to A; : a solution to

od(t,s) 09(t, )
5 = Acd(t,s), R

where | — identity matrix.

= —®(t,5)As, O(t, t) =d(s,5) =1,

Definition 2
We say that A; is stable with the rate ¢; or §;—stable if

(i) 0 >0,t >0 and limsup(||A¢||/d:) < oo;
t—o00
(ii) there exists a constant x > 0 such that

t
|®(t,s)|| < kexp{— [, dv}, s<t:

t
(iii) [dsds — oo, t = 0.
0

v
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Comments

(I) 515 > 0, t> 0 and lim SUp(HAtH/(St) < 00 = ||At|| < /%5t, t > Ii'o,
t—o0

where & is a constant:

d¢ is the best possible stability rate available for A¢ (up to a scaling factor,
i.e. 6t = )\5t, A > 0),

as we see from the lower-bound Lyapunov estimate
t
[(t,s)| = Rexp{—[[|A/] dv}, s<t
S

valid for some constant & > 0.
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Comments
(ii)
t
|®(t,s)|| < kexp{— [, dv}, s<t
S
for some constant Kk > 0

If 0 = k1 > 0 = usual exponential stability

If 6 — 0, t — oo = sub-exponential stability (weaker that the
exponential)

If 6 — oo, t — oo = super-exponential stability (stronger that the
exponential)

The notions of sub- and super- (non-exponential) stability were initially
developed for nonlinear differential equations in relation with the Lyapunov
exponents, see [Car].
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Comments

t
(iii) [dsds — oo, t — o0
0

(iii) = ||®(t,s)| — 0, t — oo, being a standard condition defining the
asymptotic stability of solutions to linear differential equations:

dx; = Apxe dt xs = x = x¢ = O(t,5)x

From (ii)-(iii) = 0 defines the rate of stability, so it's natural to say that
A; is stable with the rate §;.
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Why studying linear SDEs with non-exponentially stable state matrix?

Why upper functions are of significant importance?

@ various applications in modeling
— physics (anomalous diffusions) [SafCher];

— reliability theory and engineering (deterioration and damage)
[BhaEll],[DeBar];

— climatology (ice extent and temperature evolution) [Kwasn],[ZapAll;
— finance (interest rates, inflation) [LiPel],[LeiWu];

— cognitive science (evidence accumulation) [SmiRat];

@ stochastic control theory (non-standard LQG control)
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Previous work

Exponentially stable A; and bounded G; only

e A; = —/; limiting sets of X;, conditions on G; to have X; — 0,
t — oo a.s. [Bal]

@ scalar case: A; = —1, fading perturbations G; — 0, t — oo;
asymptotic behavior of X; [AppCheRod]

@ h; =Int [BelKaPr]

@ h; = sup;<s(asIns) [BelPal]

t
ar = e 21t [215)|Gy||2 ds, k1 > 0is the stability rate of A,
0

A key approach: the law of iterated logarithm for time-changed BM.
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Assumptions and main result

Assumption AG

the state matrix A; is stable with the rate §;;

the diffusion matrix G; is such that limsup (|| G¢||/d¢) < oo.
t—00

Remark If Assumption AG holds = E||X;||? is bounded, t > 0.

For a given 0 < v < 1/2 define

t

t
dr = /exp{—2’yf5v dv}| Gs|| ds. (2)
0 S

Then d; is also bounded, t > 0.
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Let Assumption AG hold. Then h; for Y; = ||X;||? is given by

t

t
a) for dy = Jexp{—?yfév dv}| Gs||? ds :

t
ht:dtln <f5vdv> s
0

t s
if [exp{2y[d,dv}|Gs||?ds — o0, t — o0;
0 0

b) t
hy = exp {—2ay [ 6, dv},
0

if  [exp{2y [, dv}|Gs||?ds < oo
0 0

where o,y are some constants: 0 < a <1, 0<~y<1/2.
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Idea of the proof

@ Consider a simple linear SDE

df(t = —(Is\t)l\(tdt = thWt, XQ = 0,

where limsup (8;/6;) < oo.

t—00

e Obtain an upper function h; of ||X¢||2 from

— the law of iterated logarithm for time-changed BM w; if a) condition
holds

— non-exponential decay in the b) case.

o Define Z; = X; — X; and show that \/h; is also an upper function of
|| Z¢|| for a proper choice of 5y = ~Y6¢.

@ Set ht == ;\71_-.
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Comments and remarks

Since d; is bounded, the function
0 t
h® = In([ 6, dv)
0

is the roughest estimate of upper function h; (an analogy to h§°) =Int).

For some constant 0 < 3 < 1 the function

) ¢
hg ) — exp{—0 [0, dv}
0

serves as the lower bound on h;.

Thus for any upper function from Theorem 1 and some constants ¢;, ¢, > 0

oh® < by < A
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Corollary

Let assumptions of Theorem 1 hold and define

A = In( f5 dv)
a) Convergence to zero:
if (|G| h /5t)%0 then
X2 =0 as., t — oo
b) Normalizing function:

if  (|Ge|*/6:) =0, then

I1X:|2/h® =0 as., t — 0o

c) Equivalence:

if Iitr’r_1>Lr;f(HGtH2/5t) > 0, then

h = cohg ), where ¢g > 0 is some constant.
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Examples of upper functions

We assume that Iitrlinf(||Gt||2/5t) >0 (c) of Corollary )

o Power family: 6, =a(1+t)?, a>0, b> -1
—1 < b < 0: sub-exponential stability
b =0: exponential stability
b > 0: super-exponential stability

hi ~Int if b>—-1 and h;~Inlnt if b= -1
o Logarithmic family: 6; = aln(e+t)>, a>0, b#0

b < 0: sub-exponential stability
b > 0: super-exponential stability

h: ~1Int

o Exponential family: §; = aexp {t’}, a>0, b>0
super-exponential stability
hy ~ tb
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Non-standard infinite time LQG control

Controlled stochastic process Z;, t > 0, governed by
dZ; = GiZidt + BiUidt + Grdwy Zy =z, (5)
where Uy, t > 0, is an admissible control, i.e. an
Fi = o{ws, s < t}—adapted process s.t. there exists a solution to (5);
z is a non-random vector;
C:, B:, G; are known non-random matrices of appropriate dimensions;
B: : bounded and B;B; > bl for some b > 0;
Ct: ||Gt|| = o0, t — oo and C; is super exponentially anti-stable.
Definition 3
C: is called anti-stable if —C/ is stable. If C; is anti-stable with the rate d;:

t
|®(t,s)|| > Rexp{[d,dv}, s<t.

E. Palamarchuk CEMI

17 / 24



The cost functional J1 over planning horizon [0, T]:
T
(V)= [ [ZiQuze+ vl d
0

where symmetric matrices Q; > gl (g > 0 is some constant, ’ denotes the
matrix transpose); U € U, U is the set of admissible controls.

Lemma

There exists a symmetric [1; > 0, t > 0, satisfying the Riccati equation
ﬁt + I_ItCt + Ctll_lt - ntBtB{.nt + Qt = 0,

such that:

(i) ads < T < B4; for some constants «, 5 > 0;

(Nii) the matrix Ay = C; — BB}, is d¢-super exponentially stable with
0r = A\O¢, where §; is the anti-stability rate of C;, A > 0 is a constant.

4
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Now we may define the stable feedback
Ui = -BiN.z; (6)

where Z; |t > 0, satisfies the linear SDE
dZ} = (C; — B:BN) Z}dt + Gidwy, Z§ = z.

Assumption G

c6 = limsup (||Ge || /6:) < 0o
t—00

Definition 4
The control U* € U is said to be

| \

average overtaking optimal over an infinite time-horizon if
limsup(EJT(U*) — EJr(U)) <0

T—o0

average e-overtaking optimal over an infinite time-horizon if
limsup(EJT(U*) — EJT(U)) <e for some € >0

T—oo

and any U € U.
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Optimality of the stable feedback

Let Assumption G hold. Then the stable feedback U* is

average overtaking optimal over an infinite time-horizon if in G: ¢ =0

average e-overtaking optimal over an infinite time-horizon if in G : ¢¢c > 0.

Pathwise cost comparison

It can be shown that under G, for any U € U, the costs

Jr(U*) < Jr(U) + || ZF|2 + b5 as., T — oo,
where ¢ > 0 is some constant, h% > 0 is any non-random function s.t.

hy — oo, T — oo.

For Z7 : all conditions of Theorem 1 are satisfied = upper function hy =
pathwise optimality of U* for a properly chosen normalizing function.
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Thank you for your attention!
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