
Statistical inference for discretely observed stochastic

differential equations with mixed effects

Catherine Larédo (1)
Joint work with Maud Delattre (2) & Valentine Genon-Catalot (3)

(1) Laboratoire MaIAGE, I.N.R.A. and LPMA, Université Denis Diderot, CNRS-UMR 7599,

(2) AgroParisTech, France ,

(3) UMR CNRS 8145, Laboratoire MAP5, Université Paris Descartes, Sorbonne Paris Cité

SAPS XI, July 17-21 2017, Peterhof, Russia
Based on two papers : Delattre, Genon-Catalot & Larédo, 2017 (a),(b)

() Inference for SDE with mixed effects 1 / 34



Mixed effects models

Longitudinal data widely collected in clinical trials, epidemiology,
pharmacokinetic pharmacodynamics experiments on N individuals.
Interest may focus on population effects among individuals and on
individual specific behaviour.
Random effects ) accomodate among inter-individual variability.
while the same structural model rules the individual dynamics.
Structural model here: Stochastic Differential Equations ) SDE with
mixed effects (SDEME).

Main issue for general mixed effects models
Estimation of parameters in the distribution of random effects.
Difficult in practice due to the intractable likelihood function.
Development of computationally intensive numerical methods.
Large computation times due to iterative settings.
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Diffusion process with mixed effects

8
>>>><

>>>>:

dX (t) = b(X (t),�)dt + �(X (t), )dW (t),

X (0) = x ,

x 2 , t 2 [0, T ].

(1)

�, random variables, independent of W (.),

W (.): Wiener process.

AIM: Estimation of unknown parameters in the distribution of �, .

MIXED EFFECTS: Presence of both fixed effects and random effects.

Remark: Classical problem if � = ', =  are non random, T !1.
? Continuous observations: Kutoyants (1984), Lipster & Shiryaev (2001)
? Discrete observations: estimation of (', ): e.g. Kessler(1997) .
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Repeated observations of discretized processes

Discrete observations on [0, T ] of N i.i.d. processes (Xi(t))
8
<

:

dXi (t) = b(Xi (t),�i )dt + �(Xi (t), i )dWi (t),
Xi (0) = x ,
x 2 , t 2 [0, T ] , i = 1, . . . ,N,

(�i , i ), i = 1, . . . ,N: i.i.d. random variables.
Wi , i = 1, . . . ,N: : independent Wiener processes.
((�i , i ), i = 1, . . . , N) and Wi , i = 1, . . . ,N independent.

Observations (N !1 and n !1)
Processes observed at times tj = jT/n, j = 1, . . . , n; T fixed.
Observations:( Xi ,n := (Xi (tj), j = 1, . . . , n), i = 1, . . . ,N ).
Notation: � = �n = T/n (n !1) �n ! 0).
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Main issues for SDEME

Likelihood for SDEME
As for general mixed models: intractable likelihood.
Additional pb: Discrete observations of each SDE on [0, T ].

Two possible sources of randomness in the structural SDE
Random effects in the drift and/or in the diffusion coef.
Natural to incorporate in the SDE model a joint distribution.
Discrete observations of SDE : Different rates of convergence for
estimating ' and  (Kessler, 1997).
Important issue: understanding how estimation performs in SDEME.
Necessary to clarify what to expect from numerical methods.

AIM
Investigate the statistical properties of estimators according to N, nb of
individuals and n, nb of observations per individual.
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Likelihood for SDE with mixed effects

Parametric distribution for the (�i , i ) := ⌫#(d', d )
Likelihood of the sample (Xi ,n, i = 1, . . . , N):

LN,n(#) =
NY

i=1

Ln(Xi ,n,#), where

Ln(Xi ,n,#) =

Z
Ln(Xi ,n,', )⌫#(d', d ) : Likelihood of Xi ,n, (2)

Ln(Xi ,n,', ) : Conditional likelihood given �i = '. i =  (3)

i.e. likelihood of dX

', 
i (t) = b(X', 

i (t),')dt + �(X', 
i (t), ) dWi (t).

Two main difficulties
(1) Discrete observations: intractable Ln(Xi ,n,', ) ) Approximation.
(2) Integration in (2) : no closed form for most distributions ⌫#
) Choice of specific models b(., .),�(., .) and distributions ⌫#(., .).
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Specific distribution for the random effects

? Ln(Xi ,n,#): approximation of Ln(Xi ,n,#) for the i-th path.
?  = ��1/2 ) {# = (�,') and ⌫#(d�, d')}.

Ln(Xi ,n,#) =

Z

(0,+1)⇥ d
Ln(Xi ,n, �,') ⌫#(d�, d'). (4)

FOCUS: Distributions of the random effects such that the integration of
(4) is explicit.

Three cases of mixed effects
1  i =  = ��1/2 unknown and �i ⇠ Nd (µ, ��1⌦) ) ✓ = (�,µ,⌦)

2 �i = � unknow ;  i = ��1/2

i with �i ⇠ G (a,�) ) ⌧ = (�, a,�).
3 Joint distribution for (�i , i ):  i = ��1/2

i , �i ⇠ G (a,�). and given
�i = �, �i ⇠ Nd (µ, ��1⌦) ) # = (�, a,µ,⌦)

Detail here: Cases (1) and (3).
() Inference for SDE with mixed effects 7 / 34



Case of a joint distribution for the random effects

Joint distribution for (�i , i ):  i = ��1/2

i , �i ⇠ G (a,�). and given
�i = �, �i ⇠ Nd (µ, ��1⌦).
Model where the marginal distribution of �i is not Gaussian
�i � µ has a Student distribution

Construction of two distinct approximate likelihoods (a), (b)
(a) Derived from the study of Case (1)
(b) Separation of the inference for (a,�) and (µ,⌦)

(a) Good approximation of the likelihood.
(b) Easier to implement.
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Approximate conditional likelihood (1)

Specific model : Linear mixed effects
b(x ,') = '0b(x) with '0 = ('

1

, . . . ,'d ); �(x , ) =  �(x);
b(.) = (b

1

(.), . . . bd (.))0 and �(.) known ; x known.

Approximate conditional likelihood

Derived from Euler scheme (Yi ,n) of (X', 
i ) with � = T/n,

d X

', 
i (t) = 'b(X', 

i (t))dt +  �(X', 
i (t)) dWi (t), X

', 
i (0) = x

Exact Ln(Xi ,n,', ) replaced by Ln, likelihood of (Yi ,n):

Yi ,j � Yi ,j�1

= �'0b(Yi ,j�1

) +
p
�  �(Yi ,j�1

) ✏i ,j ,

with Yi ,0 = x and ✏i ,j =
Wi (tj )�Wi (tj�1

)p
�

i.i.d. N (0, 1).
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Approximate conditional likelihood given �i = ', i =  

Set  i =  = ��1/2:

Ln(Xi ,n, �,') = �n/2 exp [��
2
(Si ,n + '0Vi ,n'� 2'0Ui ,n)], where

Si ,n = Si =
1
�

nX

j=1

(Xi (tj)� Xi (tj�1

))2

�2(Xi (tj�1

))
,

Vi ,n = Vi =

0

@
nX

j=1

�
bk(Xi (tj�1

))b`(Xi (tj�1

))

�2(Xi (tj�1

))

1

A

1k,`d

,

Ui ,n = Ui =

0

@
nX

j=1

bk(Xi (tj�1

))(Xi (tj)� Xi (tj�1

))

�2(Xi (tj�1

))

1

A

1kd

,
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Preliminary discretization results

Three Sufficient statistics
Discretization results: As n !1

Si ,n

n

!  2

i = ��1

i in prob. (quadratic variations),

Vi ,n ! Vi (T ) =

✓Z T

0

bk(Xi (t))bl (Xi (t))

�2(Xi (t))
dt

◆

1k,ld
a.s. (Rieman),

Ui ,n ! Ui (T ) =

✓Z T

0

bk(Xi (t))

�2(Xi (t))
dXi (t)

◆

1kd
in prob. (stoch. integral)

Assumptions for the statistical study
(H1): Assume that b(.),�(.) C

2 bounded; �(.) � �
0

> 0.
(H2) Vi (T ) positive definite a.s.
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Results of Case (1):  i =  fixed unknown

dXi (t) = �0ib(Xi (t))dt + i�(Xi (t))dWi (t),

Xi (0) = x 2 , t 2 [0, T ] , T = n� ; i = 1, . . . ,N.

 i =  = ��1/2 unknown and �i ⇠ Nd (µ, ��1⌦) ) ✓ = (�,µ,⌦)

Proposition: Explicit approximate likelihood for (Xi ,n)

Ln(Xi ,n, ✓) = �n/2(det(I d + Vi ,n ⌦))�1/2 exp��
2
(Si ,n + Ti ,n(µ,⌦)),

Ti ,n(µ,⌦) = (µ� V

�1

i ,n Ui ,n)
0
R

�1

i ,n (µ� V

�1

i ,n Ui ,n)� U

0
i ,n V

�1

i ,n Ui ,n

Ri ,n = V

�1

i ,n + ⌦.

? Formula Ln(Xi ,n, ✓) holds if ⌦ is singular.
? Possibility to have both fixed and random effects in the drift coefficient.
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Asymptotic properties of estimators

LN,n(✓) =
QN

i=1

Ln(Xi ,n, ✓)) `N,n(✓) = log LN,n(✓) (loglikelihood)
Define estimators ✓̃N,n maximizing `N,n(✓).
Different rates of convergence for � and µ,⌦.

DN,n =

0

B@

1p
Nn

0 0
0 1p

N
I d 0

0 0 1p
N
I d⇥d

1

CA , I(✓) =

 
1

2�2

0
0 I (✓)

!
, (5)

I (✓) explicit covariance matrix.

Theorem
Assume (H1)-(H2), I (✓) invertible. If N, n !1, N/n ! 0, there exists a
solution ✓̃N,n with prob. tending to 1 which is consistent and s.t.

D

�1

N,n(✓̃N,n � ✓)!D Nq(0, I�1(✓)) under ✓,

(q = 1 + d + d(d + 1)/2.)
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Comments

1 Theorem holds if ⌦ singular:
Possible to include mixed effects in the drift coefficient.

2 Constraint N/n ! 0
3 Fixed and random effects in the drift: Same rates of convergence.
4 No loss of information from the discrete observations:

Continuous observations (Xi (t), i = 1, . . . N) (� known, d = 1):
Delattre et al.(2013): M.L.E ✓̂N,n strongly consistent and same
asymptotic variance for ✓̂N,n and ✓̃N,n.

5 Loss of efficiency w.r.t. direct observations of �i ⇠ N
2

(µ, ��1!2)
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Joint distribution for random effects (�i , i)

Assumption: (�i , i ) are dependent.

 i =
1

�1/2

i

, �i ⇠ G (a,�), and given �i = �, �i ⇠ Nd (µ, ��1⌦).

Construction of two distinct approximate likelihoods (1), (2)
(1) Derived from the study of Case (1).
(2) Separation of the inference for (a,�) and (µ,⌦) .

(1) Good approximation of the likelihood.
(2) Easier to implement.

Remark: �i has a non Gaussian marginal distribution (�i � µ ⇠ Student).
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Approximate likelihood for one path

# = (�, a,µ,⌦)

⇤n(Xi ,n,#) =

Z +1

0

Ln(Xi ,n, �, µ,⌦)�a�1 exp (���) �a

�(a)
d�, (6)

where Ln(Xi ,n, �, µ,⌦) likelihood obtained for fixed �:

Ln(Xi ,n, �, µ,⌦) = �n/2(det(I d + Vi ,n ⌦))�1/2 exp��
2
(Si ,n + Ti ,n(µ,⌦))

Ti ,n(µ,⌦) = (µ� V

�1

i ,n Ui ,n)
0
R

�1

i ,n (µ� V

�1

i ,n Ui ,n)� U

0
i ,n V

�1

i ,n Ui ,n.

Difficulty: (6) requires 2�+ Si ,n + Ti ,n(µ,⌦) > 0.

Need to define the random sets:

Ei ,n(#) = {Si ,n + Ti ,n(µ,⌦) > 0} ; EN,n(#) = \N
i=1

Ei ,n(#).
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Method 1 for estimating # = (�, a, µ,⌦)

Explicit approximate likelihood

On EN,n(#), ⇤N,n(#) =
NY

i=1

⇤n(Xi ,n,#), where (7)

⇤n(Xi ,n,#) =
�a�(a + (n/2))

�(a)(�+
Si,n
2

+
Ti,n(µ,⌦)

2

)a+(n/2)

1
(det(Id + Vi ,n⌦))1/2

(8)

Problem: Find a sufficient. condition ensuring 8✓
0

, ✓, #
0

(EN,n(#))! 1.

Proposition: If a > 4, there exists a subset FN,n containing EN,n(#)
satisfying P#

0

(FN,n)! 1 as N, n !1.

Formula (8) holds for non invertible ⌦ ) Mixed effects for � .
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Simplifying the likelihood: Method 2

For large n, using Si ,n/n ! ��1

i

log⇤n(Xi ,n,#) ' V(1)
n (Xi ,n,�, a) + V(2)

n (Xi ,n,µ,⌦),

V(1)
n (Xi ,n,�, a) = log

 
�a�(a + (n/2))

�(a)(�+
Si,n
2

)a+(n/2)

!

V(2)
n (Xi ,n,µ,⌦) = � n

2Si ,n
Ti ,n(µ,⌦)� 1

2
log(det(Id + Vi ,n⌦))

V(1)
n (Xi ,n,�, a): appr. likelihood for b ⌘ 0 (Delattre et al., 2015).

New approximate loglikelihood for the ith path

Vn(Xi ,n,#) = V(1)
n (Xi ,n,�, a) + V(2)

n ((Xi ,n,µ,⌦) (9)

Interest of Vn: estimation of (�, a) and (µ,⌦) performed separately.
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Random effects in both coef.: estimating equations

? Two different approximations of the loglikelihood:

UN,n(#) =
NX

i=1

log⇤n(Xi ,n,#), VN,n(#) =
NX

i=1

Vn(Xi ,n,#),

? Two estimating equations leading to estimators:

r#UN,n(#̃N,n) = 0, r#VN,n(#̄N,n) = 0.
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Random effects in both coef.: properties of estimators

The estimators #̃N,n and #̄N,n of ✓ = (�, a,µ,⌦) satisfy:

Theorem
Assume a > 6, N/n ! 0 and that J(#) is invertible. Then, a solution #̃N,n
exists with probability tending to 1 which is consistent and such that, under
#, p

N(#̃N,n � #)!D Nq(0,J �1(#))

where q = 2 + d + d(d + 1)/2). For the first two components ofp
N(#̃N,n � #), the constraint N/n

2 is enough.
The same properties hold for #̄N,n. These two estimators are
asymptotically equivalent.

? E#(�
�1

i ) = �/(a � 1).
? a > 6: moment property for ��1

i (i.e. quadratic variations of Xi (t)).

J (#) block diagonal matrix precised in the next slide.
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Random effects in both coef.: Covariance matrix

J (#) =

✓
I

0

(�, a) 0
0 J(#)

◆
, I

0

(�, a) =

✓ a
�2

� 1

�
� 1

�  0(a)

◆
,

J(#) is explicit (depends on �i , Ui (T ), Vi (T ),).

I

0

(�, a): Fisher information matrix for direct observations �(a,�).
 (a) Digamma function
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Comments

1 Random effects in the drift or/and in the diffusion coefficient:
Same rates of convergence

p
N.

2 Estimation of (�, a): no loss of efficiency w.r.t. direct observations of
N i.i.d. �i and weaker constraint N/n

2 ! 0
3

a > 6: moment condition on ��1

i ( #�
�6

i < +1).
4 Note that the marginal distribution of �i is not Gaussian in this set-up.

Remark: Similar results for Case (2) :
Fixed effects in the drift and random effects in the diffusion coefficients.
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Assessment on various examples

Joint distribution for (�i , �i ): �i ⇠ �(a,�) , �i |�i = � ⇠ N (µ, ��1⌦).
(1) Mixed effect Brownian motion:

dXi (t) = �idt + ��1

i dWi (t), Xi (0) = 0 .

(2) Mixed O.U process: �i = � or �i ⇠ G (a,�)

dXi (t) = (⇢� �iXi (t))dt + ��1/2

i dWi (t), Xi (0) = 0 ,

(3) Mixed O.U. with two ind. random effects: �i = � or �i ⇠ G (a,�)

dXi (t) = (�i ,1 � �i ,2Xi (t))dt + ��1/2

i dWi (t), Xi (0) = 0 ,

(4) Mixed C.I.R. process (⇢ > 0) 8t � 0, Xi (t) � 0.)

dXi (t) = (⇢Xi (t))� �i )dt + ��1/2

i

p
|Xi (t)|dWi (t), Xi (0) = x > 0 ,

(5) Implementation on a real data set of membrane potential paths
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Simulation design and results

Each SDE : 100 data sets with N subjects on [0, T ] with T = 5.
Simulation: First draw the random effect.
Exact simulation for Models 1-3 ; Alfonsi scheme for (4).
Two sampling intervals � = 0.01; 0.005.
Two values for N : N = 50, 100.
Preliminaries: standard estimation results from direct observations of
N i.i.d. sample of (�i , �i )

Results
For Case 3 (joint distribution), similar results with Methods 1 and 2;
Method 2: easier to implement ) Only Method 2 results presented.
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Drift with random effect, fixed or random diff. coef.

dXi (t) = �idt + ��1/2

dWi (t); �i ⇠ N (µ, ��1!2)

value � = 0.01 (n = 500) � = 0.005 (n = 1000)
µ 0 0.01 (0.04) 0.01 (0.03)
!2 0.1 0.10 (0.06) 0.1 (0.04)
� 4.00 4.01 (0.04) 4.00 (0.02)

dXi (t) = �idt + ��1/2

i dWi (t); �i ⇠ G (a,�)

value � = 0.025 (n = 200) � = 0.005 (n = 1000)
µ -0.50 - 0.49 (0.06) - 0.51 (0.06)
!2 0.50 0.45 (0.11) 0.49 (0.12)
m 4.00 3.85 (0.22) 3.96 (0.23)
t 1.32 1.24 (0.06) 1.30 (0.06)

N = 50, T = 5; (a,�) = (8, 2), m = a/�, t =  (a)� log �; E (��1

i ) = 2/7.
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Drift with mixed effects, fixed or random diff. coef.

dXi (t) = (⇢Xi (t) + �i )dt + ��1/2

dWi (t); �i ⇠ N (µ, ��1!2);

value � = 0.01 (n = 500) � = 0.005 (n = 1000)
⇢ -0.1 -0.11 (0.02) -0.10 (0.01)
µ 1 1.01 (0.08) 1.02 (0.06)
!2 0.4 0.40 (0.14) 0.40 (0.12)
� 4.00 4.01 (0.04) 4.01 (0.02)

dXi (t) = (⇢� �iXi (t))dt + ��1/2

i dWi (t); �i ⇠ G (a,�)

value � = 0.025 (n = 200) � = 0.005 (n = 1000)
⇢ 1.00 0.99 (0.07) 1.00 (0.08)
µ 0.50 0.49 (0.06) 0.50 (0.06)
!2 0.10 0.08 (0.04) 0.09 (0.04)
m 4.00 3.95 (0.21) 3.99 (0.21)
t 1.32 1.26 (0.05) 1.30 (0.05)

N = 50, T = 5; m = a/�, t =  (a)� log � (E (��1

i ) = 2/7).
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Drift with 2 random effects, fixed or random diff. coef.

dXi (t) = (�i ,1Xi (t) + �i ,2)dt + ��1/2

dWi (t)

value � = 0.01 (n = 500) � = 0.005 (n = 1000)
µ

1

-0.1 -0.1 (0.04) -0.11 (0.02)
µ

2

1.00 0.98 (0.08) 1.01 (0.06)
!2

1

0.04 0.04 (0.02) 0.04 (0.01)
!2

2

0.4 0.37 (0.15) 0.37 (0.13)
� 4.00 4.02 (0.03) 4.00 (0.03)

dXi (t) = (�i ,1Xi (t) + �i ,2)dt + ��1/2

i dWi (t); �i ⇠ G (a�)

value � = 0.025 (n = 200) � = 0.005 (n = 1000)
µ

1

-0.50 -0.48 (0.07) -0.49 (0.07)
µ

2

1.00 0.97 (0.11) 0.99 (0.11)
!2

1

0.10 0.09 (0.06) 0.09 (0.06)
!2

2

0.50 0.49 (0.20) 0.52 (0.23)
m 4.00 3.96 (0.22) 4.00 (0.21)
t 1.32 1.27 (0.06) 1.31 (0.05)

N = 50 ; m = a/�, t =  (a)� log �.
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Comments on these simulation results

Pb with the sets Fi ,n: too stringent truncations ) Method 2.
Two est. methods: similar good performances (whatever n and N).
Bias and s.d of estimates decrease as N increases.
For N fixed, increasing n decreases the bias but no impact on the s.d .
of estimates
Agrees with theoretical results
For n = 200, condition N/n ! 0 not fullfilled , but good results.
Ass. (H1)(H2) not satisfied : does not deteriorate perfomances.
Singular ⌦ (mixed effects in the drift) : parameters still well estimated
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Neuronal data (from Picchini et al.,2008)

Data set: N = 240 membrane potential trajectories (Volts)
Observations: n = 2000 points on [0, T ] with T = 0.3 s
SDE MODELS: O.U.(Picchini et al, 2008,2010; Dion,2016); C.I.R
(Hoepfner,2007).
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Modeling neuronal data with SDE with mixed effects

dXi (t) = (�i ,1Xi (t) + �i ,2)dt + i�(Xi (t))dWi (t), Xi (0) = xi

Includes �(x) ⌘ 1 (O.U.) and (x) =
p
|x | (CIR).

Try to answer two questions
Which of the OU or the CIR is the most appropriate SDE?
Which parameter should be fixed or random?

Four models tested with  i = ��1/2

i with �i ⇠ G (a,�)

1 O.U.: �i ,1 = µ
1

fixed; �i ,2 random s.t. �i ,2|�i ⇠ N (µ
2

,!2

2

/�i ).
2 O.U.: �i ,1 random s.t. �i ,1|�i ⇠ N (µ

1

,!2

1

/�i ); �i ,2 = µ
2

fixed.
3 O.U.: �i ,1,�i ,2 random independent;
�i ,1|�i ⇠ N (µ

1

,!2

1

/�i ), �i ,2|�i ⇠ N (µ
2

,!2

2

/�i ).
4 CIR: �i ,1 = µ

1

fixed; �i ,2 random s.t. �i ,2|�i ⇠ N (µ
2

,!2

2

/�i ).
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Results

Comparison between various models comparing BIC values

BIC = �2 log L̂+ d log N

? L̂: likelihood of the observations evaluated at the parameter estimate
? d= nb of model parameters.
? Likelihood not explicit ) use of the best approximation (Method 1)

Results
Best model O.U. (1): dXi (t) = (µ

1

Xi (t) + �i ,2)dt + ��1/2

dWi (t)

Parameter estimates: (µ
1

= �0.037, µ
2

= 0.38,!2

2

= 0.015) ;
(a = 16.2,� = 2.93) (corresponds to E (��1) = 0.19).

? Consistent with previous results.
? Comparison with models with fixed diffusion coefficient?
? No longer possible to use BIC ) two solutions:
? Use of the Q-BIC of Eguchi& Masuda (2016) for M-estimators.
? Develop rigorous testing approach (parameters located at a boundary).
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Concluding remarks

Mixed effects for stochastic differential equations on .
Linear multidimensional mixed effect in the drift and multiplicative
random effect � in the diff. coef. with joint distribution ⌫✓(., .).
Discrete observations (n) of N paths observed on [0, T ] fixed.
Good results over all of estimators under conditions linking N and n.
It works well in pratice even if it is not satisfied.
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Extensions
Time -dependent drift and diffusion coefficients: b(t, x),�(t, x): O.K.
Assumption Xi (0) = x done for simplicity ) Xi (0) = xi is O.K.
Multimensional mixed effects diffusion models on k :
dXi (t) = B(Xi (t))�idt + i⌃(Xi (t))dWi (t); Xi (0) = x .

Adding fixed unknown parameters in b,�: b(↵, x),�(�, x)?
Testing methods to decide which parameters are fixed or random?

THANKS FOR YOUR ATTENTION !
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diff., Mixed effects in the drift+ covariates.)
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