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Rough volatility models

I Empirical studies indicate volatility is rougher than BM: Gatheral,
Jaisson & Rosenbaum (’14); Bennedsen, Lunde, Pakkanen (’16), . . .

I Subsequent development of stochastic models with this feature:
Gatheral, Jaisson & Rosenbaum (’14); Guennoun, Jacquier &
Roome (’14); Bayer, Friz & Gatheral (15); Bennedsen, Lunde,
Pakkanen (’16); El Euch & Rosenbaum (’16,’17), . . .

I These models are able to

• match roughness of time series data
• fit implied volatility smiles remarkably well
• admit in some cases microstructural justification

I Mathematically, this rests on fractional Brownian motion in the
tradition of Kolmogorov (’40), Mandelbrot & van Ness (’68), . . .
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Rough Heston model

I The Heston model is the stock price model

dSt
St

=
√
XtdW̃t

where the volatility follows a CIR process,

Xt = X0 +

∫ t

0

κ(θ −Xs)ds+

∫ t

0

σ
√
XsdWs

I El Euch & Rosenbaum (’16) study the rough Heston model
obtained by replacing the CIR process by the rough CIR process

Xt = X0 +

∫ t

0

(t− s)α−1

Γ(α)

(
κ(θ −Xs)ds+ σ

√
XsdWs

)
where α ∈ ( 1

2 , 1).
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Rough Heston model

I Inspired by the Riemann–Liouville fractional Brownian motion
introduced by Lévy (’53)

I Hölder continuous paths of any order less than H = α− 1
2

I Microstructural foundation as scaling limit of Hawkes processes

But:

I Existence and uniqueness is non-trivial: El Euch & Rosenbaum
construct the rough CIR using Hawkes processes.

I Not a semimartingale, not Markovian . . .

I . . . so how to price options? This is needed for implied volatilities!

Warmup: The standard Heston model

4/25



Rough Heston model

I Inspired by the Riemann–Liouville fractional Brownian motion
introduced by Lévy (’53)
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Characteristic function of the (standard) Heston model

I The Heston model is tractable because (logSt, Xt) is affine. This
gives explicit characteristic function:

E[eu logST ] = eφ(T )+ψ(T )X0

for u ∈ iR and S0 = 1, where (φ, ψ) solves the Riccati equations

φ′ = κθψ φ(0) = 0

ψ′ =
1

2
(u2 − u)− (uρσ − κ)ψ +

σ2

2
ψ2 ψ(0) = 0

Proof: Define Mt = eφ(T−t)+ψ(T−t)Xt+u logSt . Apply Itô:

dMt

Mt
= −

{(
φ′ − κθψ

)
+

(
ψ′ −

[
1

2
(u2 − u)− · · ·

])
Xt

}
dt+ (dWt term)

Hence, provided M is a martingale (which follows from Reψ ≤ 0),

E[eu logST ] = E[MT ] = M0 = eφ(T )+ψ(T )X0 .
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dMt

Mt
= −

{(
φ′ − κθψ

)
+

(
ψ′ −

[
1

2
(u2 − u)− · · ·

])
Xt

}
dt+ (dWt term)

Hence, provided M is a martingale (which follows from Reψ ≤ 0),

E[eu logST ] = E[MT ] = M0 = eφ(T )+ψ(T )X0 .

5/25



Characteristic function of the (standard) Heston model

I The Heston model is tractable because (logSt, Xt) is affine. This
gives explicit characteristic function:

E[eu logST ] = eφ(T )+ψ(T )X0

for u ∈ iR and S0 = 1, where (φ, ψ) solves the Riccati equations

φ′ = κθψ φ(0) = 0

ψ′ =
1

2
(u2 − u)− (uρσ − κ)ψ +

σ2

2
ψ2 ψ(0) = 0

Proof: Define Mt = eφ(T−t)+ψ(T−t)Xt+u logSt . Apply Itô:
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What about the rough Heston model?

I Remarkably, El Euch & Rosenbaum obtain an analogous result for
the rough Heston model.

I Notation: Dαh(t) = 1
Γ(1−α)

d
dt

∫ t
0
(t− s)−αh(s)ds

Theorem. (El Euch & Rosenbaum, ’16) Assume we are given a
solution ψ of the “fractional Riccati equation”

Dαψ =
1

2
(u2 − u) + (uρσ − κ)ψ +

σ2

2
ψ2

and define φ and χ by

φ′ = κθχ, φ(0) = 0; χ′ = Dαψ, χ(0) = 0.

Then
E[eu logST ] = eφ(T )+χ(T )X0

Proof: Rather involved. Uses the Hawkes approximation.
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Questions

I Can the proof of this result be simplified?

I Can the Hawkes approximation be avoided?

I What about the joint characteristic function of (logST , XT )?

I What about conditional characteristic function?

I More general specifications?
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Affine Volterra processes

I State space E ⊆ Rd

I Affine diffusion and drift coefficients

a(x)= A0 +A1x1 + · · ·+Adxd

b(x)= b0 + b1x1 + · · ·+ bdxd

with Ai ∈ Sd, bi ∈ Rd, and a(x) � 0 on E.

I σ : Rd → Rd×d continuous with σ(x)σ(x)> = a(x) on E.

I Matrix-valued kernel K ∈ L2
loc(R+,Rd×d).

A continuous E-valued solution X of the stochastic Volterra equation

Xt = X0 +

∫ t

0

K(t− s)b(Xs)ds+

∫ t

0

K(t− s)σ(Xs)dWs

is called an affine Volterra process (of convolution type).
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Affine Volterra processes

Xt = X0 +

∫ t

0

K(t− s)b(Xs)ds+

∫ t

0

K(t− s)σ(Xs)dWs

I Example: For usual affine diffusions, take K(t) ≡ id.

I Example: The volatility process in the rough volatility model by
Rosenbaum & El Euch is obtained with

K(t) =
1

Γ(α)
tα−1

I Example: More generally, the full rough volatility model uses d = 2
and the kernel

K(t) =

(
1 0
0 1

Γ(α) t
α−1

)
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Characteristic function

Notation: (F ∗G)(t) =
∫ t

0
F (t− s)G(s)ds.

Theorem. Let d = 1. Fix u ∈ C, assume ψ ∈ L2
loc(R+,C) solves

ψ = uK +

(
ψb1 +

A1

2
ψ2

)
∗K, (1)

and define φ and χ by φ(0) = 0, χ(0) = u, and

φ′ = ψb0 +
A0

2
ψ2, χ′ = ψb1 +

A1

2
ψ2. (2)

Then, under a martingale condition,

E[euXT ] = eφ(T )+χ(T )X0 , T ≥ 0.
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Characteristic function

Proof.

I Ansatz: Fix T and consider the semimartingale Mt = eYt , where

Yt = φ(T − t) + χ(T )X0 −
∫ t

0

χ′(T − s)Xsds+

∫ t

0

ψ(T − s)dZs

with Zt =
∫ t

0
b(Xs)ds+

∫ t
0
σ(Xs)dWs.

I Itô yields

dMt

Mt
=

(
−φ′ + ψb0 +

A0

2
ψ2

)
dt

+

(
−χ′ + ψb1 +

A1

2
ψ2

)
Xtdt+ (dWt term),

a local martingale by (2). By “martingale condition”, a martingale.

I (1) and stochastic Fubini yield YT = φ(0) + χ(0)XT .

I Hence E[euXT ] = E[MT ] = M0 = eφ(T )+χ(T )X0

11/25



Characteristic function

Proof.

I Ansatz: Fix T and consider the semimartingale Mt = eYt , where

Yt = φ(T − t) + χ(T )X0 −
∫ t

0

χ′(T − s)Xsds+

∫ t

0

ψ(T − s)dZs

with Zt =
∫ t

0
b(Xs)ds+

∫ t
0
σ(Xs)dWs.
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I Itô yields

dMt

Mt
=

(
−φ′ + ψb0 +

A0

2
ψ2

)
dt

+

(
−χ′ + ψb1 +

A1

2
ψ2

)
Xtdt+ (dWt term),

a local martingale by (2). By “martingale condition”, a martingale.

I (1) and stochastic Fubini yield YT = φ(0) + χ(0)XT .

I Hence E[euXT ] = E[MT ] = M0 = eφ(T )+χ(T )X0

11/25



Characteristic function

Proof.

I Ansatz: Fix T and consider the semimartingale Mt = eYt , where

Yt = φ(T − t) + χ(T )X0 −
∫ t

0

χ′(T − s)Xsds+

∫ t

0

ψ(T − s)dZs

with Zt =
∫ t

0
b(Xs)ds+

∫ t
0
σ(Xs)dWs.
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Characteristic function

I The above theorem is probably the quickest way to derive the
characteristic function of Xt . . .

I . . . although the “martingale condition” needed to make the
derivation rigorous requires additional work.

I However, the computations do not generalize to conditional
characteristic functions, which is a nontrivial extension due to
lack of Markovian structure.

I Different, more general, and more informative results are possible.
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Conditional expectation

I Set B = [b1 b2 · · · bd] ∈ Rd×d and let temporarily b0 = 0:

Xt = X0 +

∫ t

0

K(t− s)BXsds+

∫ t

0

K(t− s)σ(Xs)dWs

I The kernel −KB admits a resolvent RB ∈ L2
loc(R+,Rd×d):

(KB) ∗RB = RB ∗ (KB) = KB +RB

I Example: If K ≡ id then RB(t) = −BetB .

I Example: If K(t) = 1
Γ(α) t

α−1 and B = −κ < 0, then

RB = fα,κ

is the so-called Mittag-Leffler density function.
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Conditional expectation

Theorem. The conditional mean, or forward process, is given by

E[XT | Ft] =

(
id−

∫ T

0

RB(s)ds

)
X0 +

(∫ T

0

EB(s)ds

)
b0

+

∫ t

0

EB(T − s)σ(Xs)dWs,

where RB is the resolvent of −KB and EB = K −RB ∗K.
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Conditional characteristic function

I Recap:

Xt = X0 +

∫ t

0

K(t− s)b(Xs)ds+

∫ t

0

K(t− s)σ(Xs)dWs

with

a(x) = A0 +A1x1 + · · ·+Adxd = σ(x)σ(x)>

b(x) = b0 +Bx

I Notation: For any row vector u ∈ (Cd)∗ we define the row vector

A(u) = (uA1u>, . . . , uAdu>).

I Riccati–Volterra equation: ψ ∈ L2
loc(R+, (Cd)∗) such that

ψ = uK +

(
ψB +

1

2
A(ψ)

)
∗K.
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Conditional characteristic function

Theorem (∗). Let u ∈ (Cd)∗ and assume the Riccati–Volterra
equation has solution ψ. Fix T <∞ and define

dYt = ψ(T − t)σ(Xt)dWt −
1

2
ψ(T − t)a(Xt)ψ(T − t)>dt,

Y0 = uX0 +

∫ T

0

(
ψ(s)b(X0) +

1

2
ψ(s)a(X0)ψ(s)>

)
ds.

Then for t ≤ T ,

Yt = E[uXT | Ft] +
1

2

∫ T

t

ψ(T − s)a(E[Xs | Ft])ψ(T − s)>ds.

Consequently {exp(Yt), 0 ≤ t ≤ T} is a local martingale and, if it
is a true martingale, one has the affine transform formula

E[euXT | Ft] = eYt , t ≤ T.
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Conditional characteristic function

Remark. With the same method we actually get a formula for

E
[
exp

(
uXT + (f ∗X)T

) ∣∣∣ Ft]
for u ∈ (Cd)∗ and f ∈ L1

loc(R+, (Cd)∗).
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Volterra–Ornstein–Uhlenbeck process

I With E = Rd and σ(x) ≡ σ constant we obtain

Xt = X0 +

∫ t

0

K(t− s)(b0 +BXs)ds+

∫ t

0

K(t− s)σdWs

I This is a Gaussian process.

I The Riccati–Volterra equation has an explicit solution:

ψ = uEB + f ∗ EB .

where RB is the resolvent of −KB and EB = K −RB ∗K.

I The quadratic variation of the process Y is deterministic,

〈Y 〉t =

∫ t

0

ψ(T − s)σσ>ψ(T − s)>ds.

Thus the martingale condition holds.

18/25
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The martingale condition

How to verify the martingale property of eYt more generally?

I In the classical case (K ≡ id) the condition is

Reφ(t) + Reψ(t)x ≤ 0, t ≥ 0, x ∈ E.

I Then
ReYt = Reφ(t) + Reψ(t)Xt ≤ 0,

so that eYt is bounded.

19/25



The martingale condition

I A resolvent of the first kind of K is a kernel L such that

K ∗ L = L ∗K ≡ id

In general L is a measure, for instance L(dt) = δ0(dt) if K ≡ id.

I Example: If K(t) = 1
Γ(α) t

α−1, α ∈ ( 1
2 , 1), then

L(t) =
1

Γ(1− α)
t−α

I Example: If K is completely monotone, then L exists and is the
sum of a point mass in zero and a completely monotone function.
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The martingale condition

Shift operator: ∆τf(t) = f(t+ τ)

Lemma. Consider the setting of Theorem (∗), and assume K
admits a resolvent of the first kind L. Define

πτ = ∆τψ ∗ L−∆τ (ψ ∗ L),

and assume πτ ∈ BVloc for every τ ≥ 0. Then

Yt = φ(τ) + (∆τψ ∗ L)(0)Xt − πτ (t)X0 + (dπτ ∗X)t,

with τ = T − t and

φ(τ) =

∫ τ

0

(
ψ(s)b0 +

1

2
ψ(s)A0ψ(s)>

)
ds.

In particular: For E = Rd+, verify martingale condition by controlling the
signs of the real parts of (∆τψ ∗ L)(0), πτ (t), and dπτ .
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Volterra square-root process

I E = Rd+ and diagonal kernel K = diag(K1, . . . ,Kd):

Xi,t = Xi,0 +

∫ t

0

Ki(t− s)bi(Xs)ds+

∫ t

0

Ki(t− s)σi
√
Xi,sdWi,s

I Inward-pointing drift condition:

b0 ∈ Rd+ and Bij ≥ 0 for i 6= j.

I Assumption: Each Ki is completely monotone and is controlled
near zero in the sense that

Ki(t) = o(t−γi) as t→ 0

for some γi < 1/2 (these assumptions can be relaxed).
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The multi-factor Volterra CIR process

Theorem.

I The stochastic Volterra equation has a unique in law
Rd+-valued weak solution for any initial condition X0 ∈ Rd+.
The paths of Xi are Hölder continuous of any order less
than Hi = 1/2− γi, for each i = 1, . . . , d.

I For any u ∈ (Cd)∗ with Reui ≤ 0 for each i = 1, . . . , d, the
Riccati–Volterra equation

ψi(t) = uiKi(t) +

∫ t

0

Ki(t− s)
(
ψ(s)bi +

σ2
i

2
ψi(s)

2

)
ds

has a unique global solution ψ ∈ L2
loc(R+, (Cd)∗).

I The martingale condition in Theorem (∗) holds, as does the
affine transform formula.

23/25



Conclusion

I Brownian paths are too smooth for volatility modeling

I Affine Volterra processes generalize various known rough volatility
models

I Despite lack of Markov property, affine transform formulas can be
derived

I Lots to do:

I Numerical methods for the Riccati–Volterra equations . . .
I . . . or even explicit solutions in special cases?
I Hedging and optimal investment in these models
I Boundary attainment for Volterra square-root processes
I Non-convolution kernels K(t, s)
I Etc.
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Thank you!
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