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High-Dimensional Modeling

Mid price: s := (pbid + pask)/2

LOB Model: vt (p) density of LOB, centered: ut (p) := vt (p + st )

Observations and Assumptions

• HFT: > 1000 orders per 10sec on average for some US stocks

(Cont et al 2011)

• On average, orders arrive at prices p

∼ a(b + |p − st |)−1−µ, µ ∈ [0.6, 1.5]

(Bouchaud et al (2002), Zovko, Farmer (2006))

−→ price-time-continuous model,

−→ no spread, pbid = pask = s.
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Limit Order Books: Discrete Reality
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Limit Order Books: Centered Density ut(p)

p... distance to mid price st
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Space time continuous apprpoxixmation:
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Motivation

Since 2000, many authors studied (stochastic) PDEs for demand & supply
/ order book modeling, often in terms of approximation or MFG results.

Here:

1. Directly set up macroscopic description of order book dynamics in
highly liquid markets.

2. Keep assumptions basic, focus on tractability.

3. Calibration!
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Macroscopic Order Book Dynamics

1. Small order readjustments of HF-traders: rate ηηη

2. Tendency to shift orders in direction to bid/ask (HF-traders): rate βββ

3. Net impact rate for order volume, of LF and HF-traders: ααα

4. LF-net impact due to exogeneous information: g(p)g(p)g(p)

5. HF-trader impact on volume: dMtdMtdMt

Order book density
With dp, dt → 0, we impose for the centered order book density

dut (p) = [ηa∆ut (p) + βa∇ut (p) + αaut (p) + ga(p)]︸ ︷︷ ︸
=Aaut +ga

dt + ut (p) dMa
t .

for p > 0 (< 0 resp.) where Ma is a R-valued cts local martingale.
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Linear Models
On an abstract level,{

dut (p) = Aaut (p) dt + ut (p) dMa
t , p ∈ (0, L),

dut (p) = Abut (p) dt + ut (p) dMb
t , p ∈ (−L, 0).

(1)

Ma, Mb are cts loc martingales and Aa, Ab are linear (unbounded) maps
s. t. ∃! strong solution, for reasonable initial data u0.

Theorem (Cont, Keller-Ressel, M. (2017))
The unique solution of (1) is

ut (p) = gt (p)
[
Et (Mb)1(−L,0)(p) + Et (Ma)1(0,L)(p)

]
.

where g solves (1) for Ma/b ≡ 0.
In particular, u is a local martingale iff Ah = 0.
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Spectral Analysis

Imposing Dirichlet bdry cond., the real eigenvalues of A := η∆ + β∇ + α on
(0, L) are

νk := α− k2 ηπ
2

L2 −
β2

4η
, k ∈ N,

for resp. eigenfcts

ek (p) := e− β
2η p sin

(
kπ
L

p
)

.

Observation
The only positive eigenfct is e1 for the principle eigenvalue ν := ν1.
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dut (p) =
[
ηa∆ut (p) + βa∇ut (p) + αaut (p)

]
dt

+ σaut (p) dW a
t , p ∈ (0, L),

dut (p) =
[
ηb∆ut (p)− βb∇ut (p) + αbut (p)

]
dt

+ σbut (p) dW b
t , p ∈ (−L, 0),

ut (0+) = ut (0−) = u(−L) = u(L) = 0,

ut (p) > 0, p ∈ (0, L), ut (p) < 0, p ∈ (−L, 0), t > 0,

(1)

From parametrization theorem: ut (p) explicitly computable

, and

Corollary
For u0(p) = h(p) := sin(πL p) exp

(
± βb/a

2ηb/a
p
)

the unique solution is

ut (p) = h(p)
(
X b

t 1(−L,0)(p) + X a
t 1(0,L)(p)

)
,

where dX a/b
t = νa/bX a/b

t dt + σa/bX a/b
t dW a/b

t
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Order Book Shape

u0(p) :=

e
βb

2ηb p
sin( π

L p), p < 0

e− βa

2ηa p sin( π
L p), p > 0.

⇒ ut (p) = u0(p)e
σa/bW a/b

t +
(

νa/b− 1
2 σ2

a/b

)
t
,

Calibration

• Profile attains its maximum at:

p̂a := argmaxp ga(p) =
L
π

arctan
(

2ηaπ

βaL

)
≈ 2ηa

βa

⇒⇒⇒ β
2η is determined by initial data!

•
∫ L

0 ut (p) dp = X a
t

4πLη2

L2β2+4η2π2

(
e− β

2η L + 1
)

.
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Total Order Volume in the Book

Volume in the book at time t is

TVt :=
∫ L

−L
|ut (p)| dp = const(ηa,βa, L)X a

t + const(ηb,βb, L)X b
t ,

where Xt = exp
(
σWt +

(
ν − 1

2σ
2
)

t
)
.

Observation:
ut and TVt are martingales, iff

αa/b =αa/b =αa/b =
β2

4η
+
π2η

L2

β2

4η
+
π2η

L2

β2

4η
+
π2η

L2
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SPY 2016-06-13, first 50 levels:
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MSFT 2016-09-13, first 50 levels:
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INTC 2015-10-06, first 200 levels:
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Linear Inhomogeneous Models

Now, keep f (p) := exp
(
− β

2ηp
)

sin
(
π
L p
)

and consider the inhom. model

dut (p) =
[
ηa/b∆ut (p) + βa/b∇ut (p) + αa/but (p) + λa/bfa/b(p)

]
dt

+ σa/but (p) dW a/b
t

Compared with the hom. model we hope to get

• Mean reversion for “right” choice of parameters?

• Invariant distribution, ergodicity?

• Similiar parametrization?
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Linear Inhomogeneous Models II
Consider now the one-sided problems,

dut (p) = [Aut (p) + λf (p)] dt + σut (p) dWt , u0(p) = z0f (p), (2)

p ∈ (0, L), with initial data z0 ∈ R.

Theorem (Cont, Keller-Ressel, M. (2017))

• If f is an eigenfct for A with eigenvalue −ν, then

ut (p) = f (p)Zt ,

where Z0 = z0 and

dZt = [λ− νZt ] dt + σZt dWt .

• If f is not an eigenfct, then no “reasonable” parametrization!
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The polynomial processes of type

dZt = ν [µ− Zt ] dt + σZt dWt .

are known in the frameworks of Pearson diffusions, GARCH-diffusion
models (stoch vol), and if ν > 0 in the notation:

dZt = ν
[

α

β − 1
− Zt

]
dt +

√
2ν
β − 1

Z 2
t dWt ,

as reciprocal gamma diffusion.

Prop

• Zt is ergodic, stationary distribution is invers gamma with scale and
shape parameters α > 0 and β > 1, resp.

• E |Zt |k <∞ for all k ≤ kmax, iff kmax < β = 1 + 2ν
σ2 .

• explicit solution for Z0 > 0

• autocorellation EZt+sZt = e−νt .
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Calibration
Estimators for the parameters have been studied by many authors, e. g.
Leonenko and Suvak (2010):

Method of moments
Given observations (Z̄t )N

t=1, set m̄1 := 1
N

∑N
t=1 Z̄t , m̄2 := 1

N

∑N
k=1 Z̄ 2

t .
Then,

α̂ :=
m̄1m̄2

m̄2 − m̄1
, β̂ := 1 +

m̄2

m̄2 − (m̄1)2 .

are P-consistent estimators, if β > 4.

Martingale estimating function for discr. observed diffusion processes
(Bibby, Sørensen (1995), Leonenko and Suvak (2010)) yields P-cons.
estimator for autocorrelation parameter ν (given α, β).

=⇒ µ̂ := α̂
β̂−1

, σ̂ :=
√

ν̂
β̂−1

.
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Price Prediction
• Empirical observation (Cont et al. ’13):

dsb/a
t ≈ ±

OFb/a(t)
Db/a(t)

, D ... depths, OF ... order flow.

• First order approx for tick size δ,

Da/b(t) = ±
∫ δ

0
ut (±p) dp ≈ δ

2
∇ut (0±) =

δπ

2L
Z a/b

t , (3)

OFb/a(t) ≈ dDb/a(t) (4)

Induced Price Model I

dst =
1
2

(
dsb

t + dsa
t

)
=

1
2

(
dZ b

t

Z b
t
− dZ a

t

Z a
t

)
,

where Z a and Z b are the factor processes from before.
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Price Dynamics

Induced Price Model II
Summarizing the price dynamics are

dst =
1
2

(
µb

Db(t)
− µa

Da(t)
+ (νb − νa)

)
dt + σb dW b

t − σa dW a
t ,

dDa/b(t) = νa/b(µa/b − Da/b(t)) dt + σa/bDa/b(t) dW a/b
t

• Time inhom. extension of classical Bachelier model, based on
empirical observations!

• D−1
b/a =: Y is unique solution of logistic SDE

dYt = Yt (ν − µYt ) dt + σYt dWt , Y0 =
1

D(0)
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Calibration: Setup

Model for depths:

dDa/b(t) = νa/b(µa/b − Da/b(t)) dt + σa/b dW a/b
t , (5)

with [W a, W b]t = ρt . First try:

1. Split trading day in 50ms time intervals
→ observations Da(ti ), Db(ti ) of depths in first two levels, i = 1, ..., N.

2. For ti estimate parameters based on Da(tj ) and Db(tj ),
tj ∈ [ti − 30min, ti ].

3. Recalibrate at ti+2 = ti + 100ms.

Run on NASDAQ data for some of most liquid large-tick stocks and SPY.
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Summary

• General class of linear models

• Specific, simple subclass admits explicit solutions and fits average
profiles very well (at least close to bid/ask)
=⇒ Empirical justification on assumptions on the dynamics

• Linear inhomogeneous models reproduce mean-reversion of volume
/ depths, which is observed in the data

• Induced price models for prediction of price moves

• Fast calibration!
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