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Upper functions of stochastic processes

Let Yt , t ≥ 0, be a scalar stochastic process defined on a complete
probability space {Ω,F ,P}.
Next we adopt a slightly modified definition of upper function from
[GikhSkor, p. 289]:

Definition 1
A non-random function ht > 0, t ≥ 0, is called an upper function of Yt if

lim sup
t→∞

Yt

ht
<∞ holds with probability 1 . (1)

From (1) ⇒ there exist a constant c0 > 0 and an a.s. finite moment t0:

Yt ≤ c0ht a.s. for any t > t0.
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Example
Law of iterated logarithm for Brownian motion ⇒

ht =
√
t ln ln t for Yt = ‖wt‖

(wt is a multidimensional BM, ‖ · ‖ is the Euclidean norm)

Upper functions

– provide a.s. deterministic upper bounds on stochastic processes
(asymptotically)

if ht → 0, t →∞, then lim sup
t→∞

Yt ≤ 0 a.s.

– are used to obtain normalizing functions gt : lim sup
t→∞

(Yt/gt) ≤ 0 a.s.

gt > 0, t ≥ 0, is any function such that

lim
t→∞

(ht/gt) = 0 holds.

In this work we derive upper functions of Yt = ‖Xt‖2, where Xt , t ≥ 0, is
a solution to linear SDE with non-exponentially stable state matrix.
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Set up

Let Xt , t ≥ 0, be an n-dimensional stochastic process defined on a
stochastic basic by

dXt = AtXt dt + Gt dwt , X0 = x ,

where At ,Gt are known non-random matrices,
∞∫
0
‖Gt‖2 dt > 0 ;

wt , t ≥ 0, – is a d-dimensional Brownian motion;

x is a non-random vector.

We will assume that the matrix At is non-exponentially stable,
characterizing this property by a stability rate.
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Let Φ(t, s) be the fundamental matrix corresponding to At : a solution to

∂Φ(t, s)

∂t
= AtΦ(t, s),

∂Φ(t, s)

∂s
= −Φ(t, s)As , Φ(t, t) = Φ(s, s) = I ,

where I – identity matrix.

Definition 2
We say that At is stable with the rate δt or δt–stable if

(i) δt > 0, t ≥ 0 and lim sup
t→∞

(‖At‖/δt) <∞;

(ii) there exists a constant κ > 0 such that

‖Φ(t, s)‖ ≤ κ exp {−
t∫
s
δv dv} , s ≤ t ;

(iii)
t∫
0
δs ds →∞, t →∞ .
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Comments

(i) δt > 0, t ≥ 0 and lim sup
t→∞

(‖At‖/δt) <∞ ⇒ ‖At‖ ≤ κ̂δt , t > t̂0,

where κ̂ is a constant:

δt is the best possible stability rate available for At (up to a scaling factor,
i.e. δ̃t = λδt , λ > 0),

as we see from the lower-bound Lyapunov estimate

‖Φ(t, s)‖ ≥ κ̄ exp {−
t∫
s
‖Av‖ dv} , s ≤ t

valid for some constant κ̄ > 0.
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Comments

(ii)

‖Φ(t, s)‖ ≤ κ exp {−
t∫
s
δv dv} , s ≤ t

for some constant κ > 0

If δt ≡ κ1 > 0 ⇒ usual exponential stability

If δt → 0, t →∞ ⇒ sub-exponential stability (weaker that the
exponential)

If δt →∞, t →∞ ⇒ super-exponential stability (stronger that the
exponential)

The notions of sub- and super- (non-exponential) stability were initially
developed for nonlinear differential equations in relation with the Lyapunov
exponents, see [Car].
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Comments

(iii)
t∫
0
δs ds →∞, t →∞

(iii) ⇒ ‖Φ(t, s)‖ → 0 , t →∞, being a standard condition defining the
asymptotic stability of solutions to linear differential equations:

dxt = Atxt dt xs = x ⇒ xt = Φ(t, s)x

From (ii)-(iii) ⇒ δt defines the rate of stability, so it’s natural to say that
At is stable with the rate δt .
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Motivation

Why studying linear SDEs with non-exponentially stable state matrix?

Why upper functions are of significant importance?

various applications in modeling

– physics (anomalous diffusions) [SafCher];

– reliability theory and engineering (deterioration and damage)
[BhaEll],[DeBar];

– climatology (ice extent and temperature evolution) [Kwasn],[ZapAl];

– finance (interest rates, inflation) [LiPel],[LeiWu];

– cognitive science (evidence accumulation) [SmiRat];

stochastic control theory (non-standard LQG control)
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Previous work

Exponentially stable At and bounded Gt only

At = −I ; limiting sets of Xt , conditions on Gt to have Xt → 0,
t →∞ a.s. [Bal]

scalar case: At ≡ −1, fading perturbations Gt → 0, t →∞;
asymptotic behavior of Xt [AppCheRod]

ht = ln t [BelKaPr]

ht = supt≤s(αs ln s) [BelPal]

αt = e−2κ1t
t∫
0
e2κ1s‖Gs‖2 ds , κ1 > 0 is the stability rate of At

A key approach: the law of iterated logarithm for time-changed BM.
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Assumptions and main result

Assumption AG
the state matrix At is stable with the rate δt ;

the diffusion matrix Gt is such that lim sup
t→∞

(‖Gt‖/δt) <∞.

Remark If Assumption AG holds ⇒ E‖Xt‖2 is bounded, t ≥ 0.

For a given 0 < γ < 1/2 define

dt =

t∫
0

exp {−2γ
t∫
s
δv dv}‖Gs‖2 ds . (2)

Then dt is also bounded, t ≥ 0.
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Theorem 1
Let Assumption AG hold. Then ht for Yt = ‖Xt‖2 is given by

a) for dt =
t∫
0
exp {−2γ

t∫
s
δv dv}‖Gs‖2 ds :

ht = dt ln
( t∫

0
δv dv

)
, (3)

if
t∫
0
exp {2γ

s∫
0
δv dv}‖Gs‖2 ds →∞, t →∞ ;

b)

ht = exp {−2αγ
t∫
0
δv dv} , (4)

if
∞∫
0
exp {2γ

s∫
0
δv dv}‖Gs‖2 ds <∞

where α, γ are some constants: 0 < α < 1, 0 < γ < 1/2.
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Idea of the proof

Consider a simple linear SDE

dX̂t = −δ̂tX̂tdt + Gtdwt , X̂0 = 0 ,

where lim sup
t→∞

(δ̂t/δt) <∞.

Obtain an upper function ĥt of ‖X̂t‖2 from

– the law of iterated logarithm for time-changed BM wt̂ if a) condition
holds

– non-exponential decay in the b) case.

Define Zt = Xt − X̂t and show that
√

ĥt is also an upper function of
‖Zt‖ for a proper choice of δ̂t = γδt .

Set ht = ĥt .
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Comments and remarks

Since dt is bounded, the function

h(0)t = ln(
t∫
0
δv dv)

is the roughest estimate of upper function ht (an analogy to h(0)t = ln t).

For some constant 0 < β < 1 the function

h(1)t = exp {−β
t∫
0
δv dv}

serves as the lower bound on ht .

Thus for any upper function from Theorem 1 and some constants c1, c2 > 0

c2h
(1)
t ≤ ht ≤ c1h

(0)
t
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Corollary
Let assumptions of Theorem 1 hold and define

h(0)t = ln(
t∫
0
δv dv)

a) Convergence to zero:

if (‖Gt‖2h(0)t /δt)→ 0, then

‖Xt‖2 → 0 a.s., t →∞

b) Normalizing function:

if (‖Gt‖2/δt)→ 0, then

‖Xt‖2/h(0)t → 0 a.s., t →∞

c) Equivalence:

if lim inf
t→∞

(‖Gt‖2/δt) > 0, then

ht = c0h
(0)
t , where c0 > 0 is some constant.
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Examples of upper functions

We assume that lim inf
t→∞

(‖Gt‖2/δt) > 0 ( c) of Corollary )

Power family: δt = a(1 + t)b , a > 0, b > −1
−1 ≤ b < 0 : sub-exponential stability
b = 0 : exponential stability
b > 0 : super-exponential stability
ht ∼ ln t if b > −1 and ht ∼ ln ln t if b = −1

Logarithmic family: δt = a ln(e + t)b , a > 0, b 6= 0
b < 0 : sub-exponential stability
b > 0 : super-exponential stability
ht ∼ ln t

Exponential family: δt = a exp {tb} , a > 0, b > 0
super-exponential stability
ht ∼ tb
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Non-standard infinite time LQG control

Controlled stochastic process Zt , t ≥ 0, governed by

dZt = CtZtdt + BtUtdt + Gtdwt , Z0 = z , (5)

where Ut , t ≥ 0, is an admissible control, i.e. an
Ft = σ{ws , s ≤ t}–adapted process s.t. there exists a solution to (5);

z is a non-random vector;

Ct , Bt , Gt are known non-random matrices of appropriate dimensions;

Bt : bounded and BtB ′t ≥ bI for some b > 0;

Ct : ‖Ct‖ → ∞, t →∞ and Ct is super exponentially anti-stable.

Definition 3
Ct is called anti-stable if −C ′t is stable. If Ct is anti-stable with the rate δt :

‖Φ(t, s)‖ ≥ κ̃ exp {
t∫
s
δv dv} , s ≤ t .
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The cost functional JT over planning horizon [0,T ]:

JT (U) =

∫ T

0

[
Z ′tQtZt + U ′tUt

]
dt,

where symmetric matrices Qt ≥ qI (q > 0 is some constant, ′ denotes the
matrix transpose); U ∈ U , U is the set of admissible controls.

Lemma
There exists a symmetric Πt ≥ 0, t ≥ 0, satisfying the Riccati equation

Π̇t + ΠtCt + C ′tΠt − ΠtBtB ′tΠt + Qt = 0,

such that:

(i) αδt ≤ Πt ≤ βδt for some constants α, β > 0;

(ii) the matrix At = Ct − BtB ′tΠt is δ̃t-super exponentially stable with
δ̃t = λδt , where δt is the anti-stability rate of Ct , λ > 0 is a constant.

E. Palamarchuk CEMI 18 / 24



Now we may define the stable feedback

U∗t = −B ′tΠtZ ∗t (6)

where Z ∗t , t ≥ 0, satisfies the linear SDE

dZ ∗t = (Ct − BtB ′tΠt)Z ∗t dt + Gtdwt , Z ∗0 = z . (7)

Assumption G
cG = lim sup

t→∞
(‖Gt‖/δt) <∞

Definition 4
The control U∗ ∈ U is said to be

average overtaking optimal over an infinite time-horizon if
lim sup
T→∞

(EJT (U∗)− EJT (U)) ≤ 0

average ε-overtaking optimal over an infinite time-horizon if
lim sup
T→∞

(EJT (U∗)− EJT (U)) ≤ ε for some ε > 0

and any U ∈ U .
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Optimality of the stable feedback

Theorem 2
Let Assumption G hold. Then the stable feedback U∗ is

average overtaking optimal over an infinite time-horizon if in G : cG = 0

average ε-overtaking optimal over an infinite time-horizon if in G : cG > 0.

Pathwise cost comparison

It can be shown that under G, for any U ∈ U , the costs

JT (U∗) ≤ JT (U) + c‖Z ∗T‖2 + h∗T a.s., T →∞,

where c > 0 is some constant, h∗T > 0 is any non-random function s.t.
h∗T →∞, T →∞.

For Z ∗T : all conditions of Theorem 1 are satisfied ⇒ upper function hT ⇒
pathwise optimality of U∗ for a properly chosen normalizing function.
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Thank you for your attention!
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