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Outline

Framework: We consider a one-dimensional random walk in
i.i.d. random environment (RWRE) with a parametric
distribution.

Result: Based on a single observation of the path, we
provide a maximum likelihood estimation procedure for the
law of the environment.
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Definitions

Random environment on Z
I ω = {ωx}x∈Z i.i.d. with ωx ∈]0, 1[ and ωx ∼ µ,

I P = µ⊗Z law on ]0, 1[Z of ω and E expectation

Markov process conditional on the environment

For fixed ω, let X = {Xt}t∈N be the Markov chain on Z
starting at X0 = 0 and with transitions

Pω(Xt+1 = y |Xt = x) =

{
ωx if y = x + 1
1− ωx if y = x − 1

Pω is the measure on the path space of X given ω
(quenched law) and Eω corresponding expectation.
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Random walk in random environment (RWRE)

The (unconditional) law of X is the annealed law

P(·) = E(Pω(·)) =

∫
Pω(·)dP(ω),

with E the corresponding expectation.

Note that X is not a Markov process under P in general.
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Properties of RWRE

Consider the ”left/right” ratio

ρx =
1− ωx

ωx
, x ∈ Z

Solomon(1975) has proved the classification:

Recurrent case
If E(log ρ0) = 0, then

−∞ = lim inf
t→∞

Xt < lim sup
t→∞

Xt = +∞, P-a.s.

and Xt is null-recurrent.
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Transient case
if E(log ρ0) < 0, then

lim
t→∞

Xt = +∞, P-a.s.

Moreover, if Tn = inf{t ∈ N : Xt = n}, then

I Ballistic case: if E(ρ0) < 1, then Tn/n→ c P-a.s.
when n→∞.

I Sub-ballistic case: If E(ρ0) ≥ 1 and E(ρκ0) = 1 for
some 0 < κ ≤ 1 then (in general) Tn ∼ n1/κ.
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Statistical problem

Environment law estimation
Estimate µ from a single observation (Xt)0≤t≤T of a RWRE
path.

Assumptions

We suppose that µ = µθ? ∈ {µθ}θ∈Θ, where θ? ∈ Θ is an
unknown parameter, Θ ⊂ Rd compact.

Example (finitely supported law)

µ({ai},{pi}) =
m∑
i=1

piδai , Eρ0 =
m∑
i=1

pi log
1− ai
ai

.

We write Pθ, Pθ and so on for RWRE generated by µθ, and
P?, P?, . . . for θ = θ? (the true parameter to estimate).
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Moments estimation

O. Adelman and N. Enriquez (2004), Random walks in
random environment: what a single trajectory tells.

A nice family of estimators of moments of µθ? .

Example: first steps from each site ⇒ first moment.

Drawback:

I Which moments to estimate to recover µθ??

I Only some steps are used (loss of information).
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Maximum likelihood estimator

Fix a time T , a trajectory X[0,T ], and let Lx = Lx(T ) and
Rx = Rx(T ) be the number of left and right steps from
site x . Then,

Pω(X[0,T ]) =
∏
x∈Z

ωRx
x (1− ωx)Lx

and

Pθ(X[0,T ]) = Eθ
∏
x∈Z

ωRx
x (1− ωx)Lx =

∏
x∈Z

EθωRx
x (1− ωx)Lx =

∏
x∈Z

∫ 1

0
aRx (1− a)Lxdµθ(a).
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Let φθ be the function from N2 to R given by

φθ(x , y) = log

∫ 1

0
ax(1− a)ydµθ(a).

The criterion function θ 7→ `T (θ) is defined as

`T (θ) = log Pθ(X[0,T ]) =
∑
x∈Z

φθ(Rx , Lx),

and our estimator is

θ̂T ∈ Argmax
θ∈Θ

`T (θ).
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Aim

Study the convergence of θ̂T to θ?.

Method: Show that `T (θ) converges (after appropriate
normalisation) to some `(θ) with

Argmax
θ∈Θ

`(θ) = θ?

and apply classical M-estimation theory.

Question: where `(θ) comes from?
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Transient case

We take n ∈ N and T = Tn = inf{t ∈ N : Xt = n}.

Note that

I Only the visited sites contribute to `Tn(θ).

I The number of visited sites x < 0 is bounded (since X
is transient to the right).

I Moreover, Rx = Lx+1 + 1 for x = 0, 1, . . . , n − 1.

Hence

`Tn(θ) ≈
n−1∑
x=0

φθ(Lx+1 + 1, Lx).
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Underlying BPIRE I

Under Pθ, the sequence Ln, Ln−1, . . . , L0 has the same
distribution as a BPI denoted Z0, . . . ,Zn, and defined by

Z0 = 0 and Zk+1 =

Zk∑
i=0

ξk+1,i for k ≥ 0,

with {ξk,i} independent and

∀m ∈ N, Pω(ξk,i = m) = (1− ωk)mωk ,
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Underlying BPIRE II

Under Pθ, {Zn} is an irreducible positive recurrent
homogeneous Markov chain with the transition kernel

Qθ(x , y) =

(
x + y

x

)∫ 1

0
ax+1(1− a)ydµθ(a).

Consequence

1

n
`Tn(θ) ∼ 1

n

n−1∑
k=0

φθ(Zk + 1,Zk+1) under P?

and the right-hand side is (up to constants) the likelihood of
a Markov process.

It follows that φθ(Zk + 1,Zk+1) satisfies a law of large
numbers.
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We deduce that `Tn(θ)/n converges in P?-probability to a
deterministic limit `(θ):

`(θ) = E?φθ(Z̃0 + 1, Z̃1)

Ballistic case
Z̃k has a finite first order moment.

Sub-ballistic case
We fix θ0 ∈ Θ and replace `Tn(θ) with

`Tn(θ)−`Tn(θ0) ∼
n−1∑
k=0

(φθ(Zk + 1,Zk+1)− φθ0(Zk + 1,Zk+1))

and assume that φθ − φθ0 is uniformly integrable (true in
most cases).

Using the almost linear nature of φθ, we prove that `(θ) is
finite, with a maximum at θ?.
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Results: consistency, asymptotic normality and
efficiency

The standard M-estimators theory then applies. Under
appropriate (classical) assumptions, in the transient case, we
establish that MLE satisfies

I Consistency: limn→+∞ θ̂Tn = θ?, P?-a.s.

I Asymptotic normality:√
n(θ̂Tn − θ?) P?−dist.N (0,Σ−1

θ? ).

I Efficiency: Σθ? is the Fisher information matrix.

Hence the rate of convergence is of the order
√
T in the

ballistic case, and Tκ/2 in the sub-ballistic case (κ ≤ 1).
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Recurrent case
We consider the distributions of the form

µ(a,p) =
d∑

i=1

piδai

and assume that the true parameter θ? = (a?,p?) belongs to
a compact Θ ⊂ (0, 1)2d satisfying

Assumption (Identifiability)

For any θ = (a,p) in Θ,

0 < a1 < a2 < . . . < ad < 1

Assumption (Recurrent environment)

E?ρ0 =
d∑

i=1

p?i log
1− a?i
a?i

= 0.
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Example (Temkin)

Let

µθ =
1

2
δa +

1

2
δ1−a.

Here, the unknown parameter is a ∈ Θ ⊂ (0, 1/2).
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Properties of recurrent RWRE

An important property of recurrent RWRE is localization:
the RE creates traps where the walk spends much time.

A useful trap visualization is the potential landscape V
where V = {V (x) : x ∈ Z} is defined by

V (x) =

{ ∑x
y=0 log ρy − log ρ0 if x ≥ 0

−
∑0

y=x+1 log ρy if x < 0

The environment {ωx} can be recovered from its potential:

ωx =
exp(−V (x))

exp(−V (x)) + exp(−V (x − 1))
.



Main valleys

V (x)

x

bn
cn

log n +
√

log n

Figure :
cn = min

{
x ≥ 0 : V (x)−min0≤y≤x V (y) ≥ log n + (log n)1/2

}
,

bn = min {x ≥ 0 : V (x) = min0≤y≤cn V (y)}.
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Classical localization results

Basic localization properties of the RW are known since the
works of Sinai (1982), Golosov (1984) and others. Namely,

I with an overwhelming probability, the (reflected) walk
X[0,n] stays between 0 and cn (Arrhenius law);

I bn/ log2 n and cn/ log2 n converge in law to some
non-degenerate random variables;

I moreover, (Xn − bn)/ log2 n converges to 0 in
probability.

For MLE, we need to describe the distribution of local times
of Xn − bn.
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Infinite valley

Let Ṽ = {Ṽ (x) : x ∈ Z} be a collection of random variables
distributed as V “conditioned” to stay positive. For each Ṽ ,
let ω̃ be the corresponding environment on Z.

Let ν(x) = ν+(x) + ν−(x) be the invariant measure of the
corresponding (ergodic) Markov chain X̃n on Z, where

ν+(x) =
e−Ṽ (x)

2
∑

z∈Z e
−Ṽ (z)

and ν−(x) =
e−Ṽ (x−1)

2
∑

z∈Z e
−Ṽ (z)

.

Then ω̃x = ν+(x)/ν(x).

Remark
The possible values of ω̃ are those of ω, though their
distributions are different (not i.i.d.)
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Gantert-Peres-Shi theorem

Put ν+
n (x) = Rx/n, ν−n (x) = Lx/n.

Theorem (Gantert-Peres-Shi, 2010)

The distributions of

{(ν+
n (x + bn), ν−n (x + bn)) : x ∈ Z}

converge weakly to the distribution of

{(ν+(x), ν−(x)) : x ∈ Z}.

As a consequence, for each strongly continuous functional f
which is translation invariant, we have

f
(
{(ν+

n , ν
−
n )}

) law−−−→
n→∞

f
(
{(ν+, ν−)}

)
.
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MLE

The annealed log-likelihood `n(θ) = log Pθ(X[0,n]) in our
case is given by

`n(θ) =
∑
x∈Z

log

[
d∑

i=1

aRx
i (1− ai )

Lxpi

]

Recurrence imply Rx , Lx →∞ as n→∞, so

I the branching explodes;

I but we can apply Laplace methods.

Denote by Rn the range of the walk:

Rn =
{
x : ∃t ≤ n, Xt = x

}
Recall that |Rn| = OP?(log2 n).
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Log-likelihood decomposition

For any x in Rn, define the random integer

ı̂ = ı̂(a, n, x) = Argmax
i

{
aRx
i (1− ai )

Lx
}

Then

`n(θ) =
∑
x∈Z

(Rx log aı̂ + Lx log(1− aı̂)) +
∑
x∈Rn

log pı̂

+
∑
x∈Rn

log

1 +
∑
i 6=ı̂

(
ai
aı̂

)Rx
(

1− ai
1− aı̂

)Lx pi
pı̂


= Mn + Kn + rn = O(n) + OP?(log2 n) + oP?(log2 n)



MLE for RWRE

Comets et al.

Introduction

Framework

Problem

MLE construction

Transient case

Properties

Branching process

Results

Recurrent case

Assumptions

Properties

Construction

Addendum

Numerical simulations

Extensions

Estimators

We define a MLE as

θ̂n = (ân, p̂n) = Argmax
(a,p)∈Θ

`n(θ),

and a (pseudo) MLE (an,pn) as
an = Argmax

a∈Θa

Mn(a),

pn = Argmax
p

Kn(an,p).

Theorem
Both the the MPL estimator (an,pn) and ML estimator
(ân, p̂n) converge in P?-probability to the true parameter
value θ?.
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Cross-entropy

Recall the properties of the cross-entropy H(p,q) of two
(finitely supported) probability measures:

H(p,q) = −Ep log q = −
∑
i

pi log qi

H(p) = H(p,p) < H(p,q) if p 6= q

In particular, for 0 < p, q < 1

max
q
{p log q + (1− p) log(1− q)}

= p log p + (1− p) log(1− p)
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Support estimation

Recall that ν+
n (x) = Rx/n, ν−n = Lx/n and ω̃ = ν+/ν. So

Mn = n
∑
x∈Z

max
i

{
ν+
n (x) log ai + ν−n (x) log(1− ai )

}
and GPS theorem yields

Mn

n
law−−−→
n→∞

M(a, ν+, ν−)

=
∑
x∈Z

ν(x) max
i
{ω̃x log ai + (1− ω̃x) log(1− ai )}

= −
∑
x∈Z

ν(x) max
i

H (ω̃x , ai )
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Using ω̃x ∈ {a?i }, it’s easily seen that for a 6= a?,

M(a) < M(a?) = −
∑
x∈Z

ν(x)H (ω̃x) .

Finally,

Mn(a?)−Mn(a)

n
law−−−→
n→∞

M(a?)−M(a) > 0

whence it can be deduced that

Argmax
a∈Θ

Mn(a) = an → a?.
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Probability estimation

Recall the definition of pn:

pn = Argmax
p

∑
x∈Rn

log pı̂ = Argmax
p

d∑
i=1

|Rn(i)|
|Rn|

log pi ,

where

ı̂ = Argmax
i

{Rx log(an)i + Lx log(1− (an)i )}

and Rn(i) = {x ∈ Rn : ı̂ = i}.

By the law of large numbers, Rx/(Rx + Lx)→ ωx , hence
ωx = a?ı̂ for a ≈ a? if n is large enough.

Since an → a?, we get |Rn(i)| → #{x ∈ Rn : ωx = a?i },
whence |Rn(·)|/|Rn| = pn → p?.
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log pı̂ = Argmax
p

d∑
i=1

|Rn(i)|
|Rn|

log pi ,

where

ı̂ = Argmax
i

{Rx log(an)i + Lx log(1− (an)i )}

and Rn(i) = {x ∈ Rn : ı̂ = i}.

By the law of large numbers, Rx/(Rx + Lx)→ ωx , hence
ωx = a?ı̂ for a ≈ a? if n is large enough.

Since an → a?, we get |Rn(i)| → #{x ∈ Rn : ωx = a?i },
whence |Rn(·)|/|Rn| = pn → p?.
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Simulations

Example (Temkin)
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Figure : Boxplots of our estimator (white) and Adelman and
Enriquez estimator (grey). The true value of θ? is 0.3.
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Extensions

I P. Andreoletti, D. Loukianova, C. Matias (2015):
Hidden Markov model for parameter estimation of a
random walk in a Markov environment.

I R. Diel, M. Lerasle (2016): Non parametric estimation
for random walks in random environment.
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