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Signal in WGN - Problem

Observed process is

X (t) = S (ϑ, t) + εn (t) , 0 ≤ t ≤ T,

where S (ϑ, t) is the signal and n (t) is the gaussian noise. We have to

estimate ϑ. The statistician supposes that the observed (theoretical)

signal is Q (ϑ, t) and the model is

X (t) = Q (ϑ, t) + εm (t) , 0 ≤ t ≤ T.

where m (t) is gaussian process. Therefore we have the problem of

misspecification. We are mainly interested by the estimation of ϑ in

the cases where the regularity conditions (smoothness) of the signals

S (ϑ, t) and Q (ϑ, t) are different. The asymptotic corresponds to

ε→ 0, i.e., we have small noise asymptotics.
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Poisson Processes - Problem

We observe a periodic Poisson process Xn = (Xt, 0 ≤ t ≤ nτ) with

known period τ > 0 and intensity function

λ∗ (ϑ0, t) , 0 ≤ t ≤ τ, ϑ0 ∈ Θ.

Here ϑ0 is the true value. The statistician supposes that the intensity

function belongs to another parametric family

λ (ϑ, t) , 0 ≤ t ≤ τ, ϑ ∈ Θ.

Here once more we are interested in the situations where the

regularity conditions of these two families are different

(misspecifications in regularity). The asymptotic corresponds to

n→ ∞, i.e., we have large samples asymptotics.
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Deterministic signal in WGN

Suppose that we observe a deterministic signal in WGN

X (t) = S (ϑ0, t) + ε n (t) , 0 ≤ t ≤ T.

Here S (ϑ, t) is a ”signal” and n (t) is WGN and 0 < ε≪ 1 is “small”

parameter. Recall that the WGN n (t) has properties

En (t) = 0, En (t)n (s) = δ (t− s) ,

here δ (·) is a delta-function.
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The basic model can be rewritten as

dXt = S (ϑ0, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,

where Wt, 0 ≤ t ≤ T is a Wiener process and the WGN is defined as

derivative n (t) = dWt

dt . Of course, we put X (t) = dXt

dt .

The likelihood ratio function is

V
(
ϑ,XT

)
= exp

{∫ T

0

S (ϑ, t)

ε2
dXt −

∫ T

0

S (ϑ, t)
2

2 ε2
dt

}
, ϑ ∈ Θ.

The set Θ = (α, β).
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The maximum likelihood estimator (MLE) ϑ̂ε is defined by the MLEq

V
(
ϑ̂ε, X

T
)
= sup

ϑ∈Θ
V
(
ϑ,XT

)
.

If this equation has many solutions, then we can take anyone as the

MLE.

If the parameter ϑ is a r. v. with a density function p (ϑ) , ϑ ∈ Θ,

then we can define the bayesian estimator (BE) ϑ̃ε as follows

ϑ̃ε =

∫ β

α
θp (θ)V

(
θ,XT

)
dθ∫ β

α
p (θ)V (θ,XT ) dθ

.

Sometimes the BE can be used even in the situations where the

parameter ϑ is not random. In that case we take as p (·) some

continuous positive function and consider ϑ̃ε as a method of

construction of estimator. Recall that in the singular estimation

problems the BE are asymptotically efficient and the MLE - not.
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Introduce as well the trajectory fitting estimator (TFE) ϑ̌ε (which

can be called the minimum distance estimator (MDE)) defined by

the relation∫ T

0

[
Xt −

∫ t

0

S
(
ϑ̌ε, s

)
ds

]2
dt = inf

θ∈Θ

∫ T

0

[
Xt −

∫ t

0

S (θ, s) ds

]2
dt.

Therefore we have three estimators: MLE ϑ̂ε, BE ϑ̃ε and TFE ϑ̌ε and

we are interested by the convergences

ϑ̂ε − ϑ0
φε

=⇒ û ∼?,
ϑ̃ε − ϑ0
φε

=⇒ ũ ∼?,
ϑ̌ε − ϑ0
ψε

=⇒ ǔ ∼?
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The scketch of the proof (approach developed by Ibragimov and

Khasminskii): introduce the normalized likelihood ratio

Zε (u) =
V
(
ϑ0 + φεu,X

T
)

V (ϑ0, XT )
, u ∈ Uε =

(
α− ϑ0
φε

,
β − ϑ0
φε

)
.

The normalizing function φε → 0 is such that we have the

convergence

Zε (·) =⇒ Z (·) ,

where Z (u) , u ∈ R is some limit process.

Let us introduce the r.v.’s û and ũ by the relations

Z (û) = sup
u
Z (u) , ũ =

∫
uZ (u) du∫
Z (u) du

.
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Now the limit distribution of the MLE is obtained as follows

Pϑ0

(
ϑ̂ε − ϑ0
φε

< x

)
= Pϑ0

(
ϑ̂ε < ϑ0 + φεx

)
= Pϑ0

{
sup

ϑ<ϑ0+φεx
V
(
ϑ,XT

)
> sup

ϑ≥ϑ0+φεx
V
(
ϑ,XT

)}

= Pϑ0

{
sup

ϑ<ϑ̂+φεx

V
(
ϑ,XT

)
V (ϑ0, XT )

> sup
ϑ≥ϑ̂+φεx

V
(
ϑ,XT

)
V (ϑ0, XT )

}

= Pϑ0

{
sup

u<x,u∈Uε

Zε (u) > sup
u≥x,u∈Uε

Zε (u)

}
−→ Pϑ0

{
sup
u<x

Z (u) > sup
u≥x

Z (u)

}
= Pϑ0 (û < x) .

Here we put ϑ = ϑ0 + φεu.
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For the bayesian estimator we have (once more we change the

variables ϑu = ϑ0 + φεu):

ϑ̃ε =

∫
θp (θ)V

(
θ,XT

)
dθ∫

p (θ)V (θ,XT ) dθ
= ϑ0 + φε

∫
Uε
up (θu)V

(
θu, X

T
)
du∫

Uε
p (θu)V (θu, XT ) du

= ϑ0 + φε

∫
Uε
up (θu)Zε (u) du∫

Uε
p (θu)Zε (u) du

.

Hence

ϑ̃ε − ϑ0
φε

=

∫
Uε
up (θu)Zε (u) du∫

Uε
p (θu)Zε (u) du

=⇒
∫
R
uZ (u) du∫

R
Z (u) du

= ũ.

Therefore

ϑ̂ε − ϑ0
φε

=⇒ û,
ϑ̃ε − ϑ0
φε

=⇒ ũ.
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No misspecification
Suppose that the signal S (ϑ, ·) is a smooth function of ϑ:

dXt = S (ϑ0, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T

Introduce the normalized likelihood ratio

Zε (u) =
V
(
ϑ0 +

εu
I(ϑ0)

1/2 , X
T
)

V (ϑ0, XT )
, u ∈ Uε =

(
α− ϑ0

I (ϑ0)−1/2
ε
,

β − ϑ0

I (ϑ0)−1/2
ε

)
We have the convergence (LAN)

Zε (u) =⇒ Z (u) = exp

{
uξ − u2

2

}
, u ∈ R.

11



Here ξ ∼ N (0, 1) and

I (ϑ0) =
∫ T

0

Ṡ (ϑ0, t)
2
dt,

is the Fisher information and dot means derivation w.r.t. ϑ.

We have for the MLE ϑ̂ε and BE ϑ̃ε

I (ϑ0)
1
2 ε−1

(
ϑ̂ε − ϑ0

)
=⇒ ξ, I (ϑ0)

1
2 ε−1

(
ϑ̃ε − ϑ0

)
=⇒ ξ,

Eϑ0

∣∣∣∣∣ ϑ̂ε − ϑ0

I (ϑ0)
1
2 ε

∣∣∣∣∣
p

−→ E |ξ|p , Eϑ0

∣∣∣∣∣ ϑ̃ε − ϑ0

I (ϑ0)
1
2 ε

∣∣∣∣∣
p

−→ E |ξ|p

and the relations

Z (ξ) = sup
u
Z (u) , ξ =

∫
uZ (u) du∫
Z (u) du

.
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Therefore the MLE ϑ̂ε and BE ϑ̃ε are consistent, asymptotically

normal,we have the convergence of all polynomial moments and the

both estimators are asymptotically efficient (Ibragimov-Khasminskii

1975).

For the MDE ϑ̌ε we have the similar asymptotic normality

ε−1
(
ϑ̌ε − ϑ0

)
=⇒ N (0,D (ϑ0)) ,

here

D (ϑ) =

∫ T

0

(∫ T

s

∫ t

0
Ṡ (ϑ, v) dvdt

)2
ds(∫ T

0

(∫ t

0
Ṡ (ϑ, s)

)2
ds

)2 ≥ I (ϑ)−1
.
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The asymptotic efficiency is defined with the help of the following

Hajek-Le Cam’s (1972) lower bound. For all ϑ0 ∈ Θ we have

lim
δ→0

lim
ε→0

sup
|ϑ−ϑ0|<δ

ε−2Eϑ

∣∣ϑ̄ε − ϑ
∣∣2 ≥ I (ϑ0)−1

.

Therefore we call an estimator ϑ∗ε asymptotically efficient if for all

ϑ0 ∈ Θ

lim
δ→0

lim
ε→0

sup
|ϑ−ϑ0|<δ

ε−2Eϑ |ϑ∗ε − ϑ|2 = I (ϑ0)−1
.

These results were generalized to a wide class of (colored) Gaussian

noises n (·) in the work K. 1980. Using the theory of Reproducing

Kernel Hilbert Space (RKHS) it was shown that if the regularity

conditions are expressed in the terms of RKHS-norms, then the MLE

and BE have the similar asymptotic properties.
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If the signal is a discontinuous function

S (ϑ, t) = h (t) 1I{t<ϑ} + g (t) 1I{t≥ϑ}

where h (t) and g (t) are two different functions and the unknown

parameter ϑ ∈ Θ ⊂ (0, T ). Introduce the normalized likelihood ratio

Zε (u) =
V
(
ϑ0 +

ε2u
r(ϑ0)

2 , XT
)

V (ϑ0, XT )
, u ∈ Uε =

(
α− ϑ0

r (ϑ0)
−2
ε2
,

β − ϑ0

r (ϑ0)
−2
ε2

)
.

We have the convergence

Zε (u) =⇒ Z (u) = exp

{
W (u)− |u|

2

}
, u ∈ R,

where r (ϑ) = g (ϑ)− h (ϑ) and W (·) is two-sided Wiener process.
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This convergence allows us to prove that the MLE and BE have the

rate of convergece ε2 with different limit distributions:

r (ϑ0)
2
ε−2

(
ϑ̂ε − ϑ0

)
=⇒ ζ̂, r (ϑ0)

2
ε−2

(
ϑ̃ε − ϑ0

)
=⇒ ζ̃,

where ζ̂ and ζ̃ are the random variables defined as follows.

Z(ζ̂) = sup
u∈R

Z (u) , ζ̃ =

∫
R
uZ (u) du∫

R
Z (u) du

.

For the proof see Ibragimov, Khasminskii 1975.

We have Eϑ0 ζ̂
2 = 26 (Terent’ev 1968) and Eϑ0 ζ̃

2 ≈ 19, 3 (Ibragimov,

Khasminskii 1975, Golubev 1979, Rubin, Song 1995, Novikov,

Kordzakhia 2013).
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The asymptotic efficiency is defined with the help of the following

lower bound : for all estimators ϑ̄ε and all ϑ0 ∈ Θ we have

lim
δ→0

lim
ε→0

sup
|ϑ−ϑ0|<δ

r (ϑ0)
4
ε−4Eϑ

∣∣ϑ̄ε − ϑ
∣∣2 ≥ Eϑ0 ζ̃

2.

We call an estimator ϑ∗ε asymptotically efficient if for all ϑ0 ∈ Θ

lim
δ→0

lim
ε→0

sup
|ϑ−ϑ0|<δ

r (ϑ0)
4
ε−4Eϑ |ϑ∗ε − ϑ|2 = Eϑ0 ζ̃

2.

For the proof see Ibragimov, Khasminskii 1975. The BE ϑ̃ε is

asymptotically efficient.
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Let us mention as well the parameter estimation problem with

cusp-type singularity. Suppose that the observed process is

dXt = [a |t− ϑ|κ + h (ϑ, t)] dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,

where κ ∈ (0, 12 ). The function h (ϑ, t) is continuously differentiable

w.r.t. ϑ. The unknown parameter ϑ ∈ Θ = (α, β), 0 < α < β < T .

Introduce the Hurst parameter H = κ+ 1
2 and the normalized

likelihood ratio

Zε (u) =

V

(
ϑ0 +

ε
1
H u

Γ
1
H
, XT

)
V (ϑ0, XT )

, u ∈ Uε =

(
α− ϑ0

Γ− 1
H ε

1
H

,
β − ϑ0

Γ− 1
H ε

1
H

)
.
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We have the convergence

Zε (u) =⇒ Z (u) = exp

{
WH (u)− |u|2H

2

}
, u ∈ R,

Here Γ is some constant and WH (·) is double-side fractional

Brownien motion (fBm).Therefore the MLE ϑ̂ε and BE ϑ̃ε are

consistent, have different limit distributions

Γ
1
H ε−

1
H

(
ϑ̂ε − ϑ0

)
=⇒ ζ̂H , Γ

1
H ε−

1
H

(
ϑ̃ε − ϑ0

)
=⇒ ζ̃H ,

Eϑ0

∣∣∣∣∣ ϑ̂ε − ϑ0

Γ− 1
H ε

1
H

∣∣∣∣∣ −→ E
∣∣∣ζ̂H ∣∣∣p , Eϑ0

∣∣∣∣∣ ϑ̃ε − ϑ0

Γ− 1
H ε

1
H

∣∣∣∣∣ −→ E
∣∣∣ζ̂H ∣∣∣p

(Chernoyarov, Dachian, K. 2015). Here

Z(ζ̂H) = sup
u∈R

Z (u) , ζ̃H =

∫
R
uZ (u) du∫

R
Z (u) du

.
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The asymptotic efficiency is defined with the help of the following

lower bound : for all estimators ϑ̄ε and all ϑ0 ∈ Θ we have

lim
δ→0

lim
ε→0

sup
|ϑ−ϑ0|<δ

Γ
2
H ε−

2
H Eϑ

∣∣ϑ̄ε − ϑ
∣∣2 ≥ Eϑ0 ζ̃

2
H .

We call an estimator ϑ∗ε asymptotically efficient if for all ϑ0 ∈ Θ

lim
δ→0

lim
ε→0

sup
|ϑ−ϑ0|<δ

Γ
2
H ε−

2
H Eϑ |ϑ∗ε − ϑ|2 = Eϑ0 ζ̃

2
H .

The asymptotically efficient are the BE only.
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Values of lnEϑζ̃
2
H (solid line) and lnEϑζ̂

2
H (dashed line) for

H ∈
[
2
5 , 1
]
(Novikov, Kordzakhia, Ling, 2014).
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Three types of regularity

• Smooth

ϑ̂ε − ϑ0
εν

=⇒ û1, ν = 1,

• Cusp

ϑ̂ε − ϑ0
εν

=⇒ û2, 1 < ν < 2,

• Change-point

ϑ̂ε − ϑ0
εν

=⇒ û3, ν = 2.
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Poisson processe, no misspecifications

We observe Poisson process Xn = (Xt, 0 ≤ t ≤ nτ) of intensity

function λ (ϑ, t) = λ (t− ϑ). The function λ (t) can be smooth,

cusp-type and discontinuous, i.e., we have three types of regularity:

• Smooth (K. 1978)

n
ν
2

(
ϑ̂n − ϑ0

)
=⇒ v̂1, ν = 1,

• Cusp λ (ϑ, t) = a |t− ϑ|κ + h (t) (Dachian 2003)

n
ν
2

(
ϑ̂n − ϑ0

)
=⇒ v̂2, 1 < ν < 2,

• Change-point λ (ϑ, t) = h (t) 1I{t<ϑ} + g (t) 1I{t≥ϑ} (K. 1980)

n
ν
2

(
ϑ̂n − ϑ0

)
=⇒ v̂3, ν = 2.
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Misspecifications
Suppose that the observed process (real model) is

dXt = S (ϑ0, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,

where ϑ0 is the true value of unknown parameter. The statistician

uses the theoretical model

dXt = Q (ϑ, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,

with Q (ϑ, ·) ∈ L2 (0, T ). The likelihood ratio (misspecified) is

V
(
ϑ,XT

)
= exp

{∫ T

0

Q (ϑ, t)

ε2
dXt −

∫ T

0

Q (ϑ, t)
2

2ε2
dt

}
, ϑ ∈ Θ.
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The (pseudo) MLE ϑ̂ε is defined by the equation

V
(
ϑ̂ε, X

T
)
= sup

ϑ∈Θ
V
(
ϑ,XT

)
.

To understand what is the limit of the MLE we write the likelihood

ratio as follows

ε2 lnV
(
ϑ,XT

)
= ε

∫ T

0

Q (ϑ, t) dWt −
1

2

∫ T

0

[
Q (ϑ, t)

2 − 2Q (ϑ, t)S (ϑ0, t)
]
dt

= ε

∫ T

0

Q (ϑ, t) dWt −
1

2
∥Q (ϑ, ·)− S (ϑ0, ·)∥2 +

1

2
∥S (ϑ0, ·)∥2 ,

where we denoted as ∥·∥ the L2 (0, T ) norm.
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Figure 1: Theoretical (dashed line) and real (continuous line) signals
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Figure 2: Theoretical (dashed line) and real (continuous line) signals
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Figure 3: Theoretical (dashed line) and real (continuous line) signals
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It can be easily verified that under mild regularity conditions we have

the convergence in probability

sup
ϑ∈Θ

∣∣∣∣ε2 lnV (ϑ,XT
)
− 1

2
∥Q (ϑ, ·)− S (ϑ0, ·)∥2 +

1

2
∥S (ϑ0, ·)∥2

∣∣∣∣ −→ 0.

Hence if we suppose that the equation

inf
ϑ∈Θ

∥Q(ϑ, ·)− S (ϑ0, ·)∥ =
∥∥∥Q(ϑ̂, ·)− S (ϑ0, ·)

∥∥∥
has a unique solution ϑ̂, then we obtain the well-known result that in

the case of misspecification the MLE ϑ̂ε converges to the value ϑ̂,

which minimizes the Kullback-Leibler distance.
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Discontinuous vs smooth

Here we consider the situation where the true model of observations

dXt = S (ϑ0, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T

has a signal S (ϑ0, t) is a smooth w.r.t. ϑ function but the theoretical

model chosen by statistician

dXt = Q (ϑ, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,

contains the signal

Q (ϑ, t) = h (t) 1I{t<ϑ} + g (t) 1I{t≥ϑ},

which is a discontinous function of time with the jump at the point ϑ.
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The unknown parameter ϑ ∈ Θ = (α, β) with 0 < α < β < T . We

observe a trajectory XT = (Xt, 0 ≤ t ≤ T ) and we want to estimate

ϑ0. Introduce the pseudo-likelihood ratio

V
(
ϑ,XT

)
= exp

{
1

ε2

∫ ϑ

0

h (t) dXt +
1

ε2

∫ T

ϑ

g (t) dXt

− 1

2ε2

∫ ϑ

0

h (t)
2
dt− 1

2ε2

∫ T

ϑ

g (t)
2
dt

}
, ϑ ∈ Θ

and define the pseudo-MLE ϑ̂ε by the equation

V
(
ϑ̂ε, X

T
)
= sup

ϑ∈Θ
V
(
ϑ,XT

)
.
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Let us introduce the following notations:

δ (t) = h (t)− g (t) , Φ(ϑ) =

∫ T

0

[Q (ϑ, t)− S (ϑ0, t)]
2
dt,

γ (ϑ) =
Φ̈(ϑ)

2
, Ẑ (u) = exp

{
δ(ϑ̂)W (u)− γ(ϑ̂)

2
u2

}
, u ∈ R,

û = arg sup
u∈R

[
δ(ϑ̂)W (u)− γ(ϑ̂)

2
u2

]
, û0 = arg sup

v∈R

[
w (v)− v2

2

]
.

Here dot means differentiating w.r.t. ϑ and w (v) , v ∈ R is

double-sided Wiener process.
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Conditions M.

1. inft∈Θ δ (t) > 0.

2. The equation∫ ϑ̂

0

[h (t)− S (ϑ0, t)]
2
dt+

∫ T

ϑ̂

[g (t)− S (ϑ0, t)]
2
dt = inf

ϑ∈Θ
Φ(ϑ)

has a unique solution ϑ̂ = ϑ̂ (ϑ0) ∈ Θ.

3. The functions h (t) , g (t) and S (ϑ, t) are continuously

differentiable w.r.t. t ∈ Θ.

4. infϑ∈Θ Φ̈ (ϑ) > 0,

33



The properties of the pseudo-MLE ϑ̂ε are described in the following

theorem.

Theorem 1 Let the conditions M be fulfilled then the estimator ϑ̂ε

converges to the value ϑ̂, has the limit distribution

ϑ̂ε − ϑ̂

ε2/3
=⇒ û =

(
δ(ϑ̂)

γ(ϑ̂)

)2/3

û0,

and for any p > 0

lim
ε→0

Eϑ0

∣∣∣∣∣ ϑ̂ε − ϑ̂

ε2/3

∣∣∣∣∣
p

= Eϑ0 |û|
p
.

The proof in Chernoyarov, K., Trifonov 2015.
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Let us change the variables u = rv, then we have the equality in

distribution

δ(ϑ̂)W (u)− γ(ϑ̂)

2
u2 = δ(ϑ̂)

√
rw (v)− γ(ϑ̂)r2

2
v2

= δ(ϑ̂)
√
r

(
w (v)− γ(ϑ̂)r3/2

δ(ϑ̂)

v2

2

)
=
δ(ϑ̂)4/3

σ(ϑ̂)1/3

(
w (v)− v2

2

)
,

where we put r =
(
δ(ϑ̂)/γ(ϑ̂)

)2/3
. Hence û =

(
δ(ϑ̂)

γ(ϑ̂)

)2/3
û0, where

Z0 (û0) = sup
u
Z0 (u) , Z0 (u) = exp

{
w (u)− u2

2

}
and

ϑ̂ε − ϑ̂

ε2/3
=⇒ û =

(
δ(ϑ̂)

γ(ϑ̂)

)2/3

û0,
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Note that as ϑ̂ is the point of minimum of the function Φ (ϑ) we have

the equality

Φ̇
(
ϑ̂
)
=
[
h(ϑ̂)− S(ϑ0, ϑ̂)

]2
−
[
g(ϑ̂)− S(ϑ0, ϑ̂)

]2
= 0,

which is equivalent to

S(ϑ0, ϑ̂) =
h(ϑ̂) + g(ϑ̂)

2
.

Of course, this is a necessary condition only. If this equation has no

solution, say,

S(ϑ0, t) <
h(t) + g(t)

2
, α < t < β,

then ϑ̂ = α.
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In these two cases the behavior of the estimator ϑ̂ε can be studied as

it was done in K. 1994, Section 2.8. If we have the equality

S(ϑ0, t) =
h(t) + g(t)

2
, α < a ≤ t ≤ b < β,

for some interval [a, b], then any point of this interval can be taken as

ϑ̂.

We do not study here the properties of ϑ̂ε in such situations and in

the situation when the function Φ (ϑ) , α < ϑ < β has two or more

points of minimum. Note that such study can be done by the same

way as in K. 1994, Section 2.7.
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We see that the ϑ̂ε has a “bad” rate of convergence. Note that for

other estimators the rate can be better.

Let us see the behavior of TFE ϑ̌ε defined by the relation

ϑ̌ε = arg inf
ϑ∈Θ

∫ T

0

[
Xt −

∫ t

0

Q (ϑ, s) ds

]2
dt.

Note that the function

q (ϑ, t) =

∫ t

0

Q (ϑ, s) ds

has continuous in L2 [0, T ] derivative w.r.t. ϑ.
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Therefore if we suppose that the function

Ψ (ϑ) =

∫ T

0

[∫ t

0

[Q (ϑ, s)− S (ϑ0, s)] ds

]2
dt, ϑ ∈ Θ

has a unique minimum at the point ϑ̌ ∈ Θ, then it can be shown that

TFE is asymptotically normal

ϑ̌ε − ϑ̌

ε
=

∫ T

0
Wt q̇

(
ϑ̌, t
)
dt∫ T

0
q̇
(
ϑ̌, t
)2

dt
(1 + o (1)) =⇒ N

(
0,D

(
ϑ0, ϑ̌

))
.

Therefore this estimator is asymptotically normal with the good rate

ε. The details of the proof can be found in the Section 7.4 in K. 1994.
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Example 1. Suppose that the observed process is

dXt = (t− ϑ0) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,

where ϑ0 ∈ Θ = (α, β), 0 < α < β < T and the theoretical model is

dXt = sgn (t− ϑ) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T, ϑ ∈ Θ.

The pseudo-likelihood ratio is the function

V
(
ϑ,XT

)
= exp

{
1

ε2

∫ T

0

sgn (t− ϑ) dXt −
T

2ε2

}
, ϑ ∈ Θ

because sgn (t− ϑ)
2
= 1.
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Note that

ϑ̂ = arg inf
ϑ∈Θ

∫ T

0

[sgn (t− ϑ)− (t− ϑ0)]
2
dt = ϑ0.

Hence the MLE ϑ̂ε defined by the relation

ϑ̂ε = arg sup
ϑ∈Θ

∫ T

0

sgn (t− ϑ) dXt

in this misspecified parameter estimation problem is consistent.
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Proposition 1 The pseudo-MLE ϑ̂ε in this problem is consistent,

converges in distribution

ϑ̂ε − ϑ0
ε2/3

=⇒ û

and the moments converge: for any p > 0

lim
ε→0

Eϑ0

∣∣∣∣∣ ϑ̂ε − ϑ0
ε2/3

∣∣∣∣∣
p

= E |û|p .

This is a particular case covered by the Theorem 1.
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Example 2. Choosing different smooth signals in the class

S =

{
S (t− ϑ) = sgn (t− ϑ) |t− ϑ|κ , κ > 1

2

}
and the same theoretical model we can obtain different rates of

convergence of estimators. Put ϑ = ϑ0 + ε
2

2κ+1u. Then the

corresponding calculations provides us

Ẑε (u) =⇒ Ẑ (u) = exp

{
W (u)− |u|1+κ

1 + κ

}
, u ∈ R

and the pseudo-MLE ϑ̂ε is consistent and satisfies the relations

ϑ̂ε − ϑ0

ε
2

2κ+1

=⇒ û = arg sup
u∈R

[
W (u)− |u|1+κ

1 + κ

]
.

Therefore choosing different κ > 1
2 we can obtain any rate εγ , γ < 1

of convergence of pseudo-MLE (Chernoyarov, Dachian, K. [1]).
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Bayes estimators

The estimator is

ϑ̃ε =

∫ β

α
ϑp (ϑ)V

(
ϑ,XT

)
dϑ∫ β

α
p (ϑ)V (ϑ,XT ) dϑ

,

where p (ϑ) , α < ϑ < β is continuous positive density of the

distribution of the random variable ϑ.

It can be shown that ϑ̃ε converges to the same value ϑ̂. Then using

the notations of the section 3.1 we can write

ϑ̃ε =

∫ β

α
ϑp (ϑ)

V (ϑ,XT )
V (ϑ̂,XT )

dϑ∫ β

α
p (ϑ) V (ϑ,XT )

V (ϑ̂,XT )
dϑ

= ϑ̂+ ε2/3
∫
Uε
u p (ϑu)Zε (u) du∫

Uε
p (ϑu)Zε (u) du

,

where we changed the variables ϑ = ϑu = ϑ̂+ ε2/3u.
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Hence

ϑ̃ε − ϑ̂

ε2/3
≈
∫
Uε
uZε (u) du∫

Uε
Zε (u) du

=

∫
Uε
u
(
Ẑε (u)

)2ε−2/3

du∫
Uε

(
Ẑε (u)

)2ε−2/3

du

and the problem reduces to the study of the asymptotics of these two

integrals in the situation, when

Ẑε (u) = exp

{
δ(ϑ̂)W (u)− γ(ϑ̂)

2
u2

}
(1 + o (1)) .
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Open Problems.

1. Calculate

E û20, û0 = arg sup
v∈R

{
w (v)− v2

2

}
2. To prove the asymptotics

ϑ̃ε − ϑ̂

ε2/3
≈ û =

(
δ(ϑ̂)

γ(ϑ̂)

)2/3

û0,

This means that as usual in regular estimation problems the

asymptotic behavior of the BE is asymptotically equivalent to that of

the MLE.
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Smooth vs discontinuous

Suppose now that the true model has discontinuous trend coefficient

S (ϑ0, t) of the following form

dXt =
[
h (t) 1I{t<ϑ0} + g (t) 1I{t≥ϑ0}

]
dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,

where ϑ0 ∈ Θ = (α, β), 0 < α < β < T , but the statistician uses the

model

dXt = Q (ϑ, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T

with the “smooth” signal Q (ϑ, ·). The likelihood ratio L
(
ϑ,XT

)
and

the pseudo-MLE ϑ̂ε are defined by the same relations. As before, we

are interested by the asymptotic behavior of ϑ̂ε as ε→ 0.
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Example 3. Suppose that the observed process is

dXt = sgn (t− ϑ0) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,

and we use the model

dXt = Q (ϑ, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,

where

Q (ϑ, t) =
t− ϑ

δ
1I|t−ϑ|≤δ + sgn (t− ϑ)

to estimate the parameter ϑ ∈ Θ = (α, β), where 0 < α < β < T .
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It is easy to see that the function

Φ (ϑ) =

∫ T

0

[Q (ϑ, t)− sgn (t− ϑ0)]
2
dt, ϑ ∈ Θ

atteints its minimum at the point ϑ̂ = ϑ0. Therefore the pseudo-MLE

ϑ̂ε −→ ϑ0.

It has the Gaussian distribution

ϑ̂ε − ϑ0
ε

∼ N (0, D)

and the rate of convergence is ε.
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General case. Introduce the conditions of regularity.

Conditions R.

1. The functions h (·) and g (·) are bounded and for all ϑ ∈ [α, β] we

have h (ϑ) ̸= g (ϑ).

2. The function

Φ(ϑ) =

∫ T

0

[Q (ϑ, t)− S (ϑ0, t)]
2
dt, ϑ ∈ Θ

has a unique minimum at the point ϑ̂ ∈ Θ.

3. The function Q (ϑ, t) ∈ C2
b .

4. The function

Φ̈(ϑ̂) = 2

∫ T

0

Q̈(ϑ̂, t)
[
Q(ϑ̂, t)− S (ϑ0, t)

]
dt+

∫ T

0

Q̇(ϑ̂, t)2 dt > 0.
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Let us denote

I (ϑ) =
∫ T

0

Q̇(ϑ, t)2 dt, D (ϑ0)
2
= Φ̈(ϑ̂)−2I(ϑ̂).

Theorem 2 Let the conditions R be fulfilled, then the estimator ϑ̂ε

converges to the value ϑ̂, is asymptotically normal

ϑ̂ε − ϑ̂

ε
=⇒ û ∼ N

(
0,D (ϑ0)

2
)
,

and for any p > 0

lim
ε→0

Eϑ0

∣∣∣∣∣ ϑ̂ε − ϑ̂

ε

∣∣∣∣∣
p

= Eϑ0 |û|
p
.
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Discontinuous versus discontinuous

The observed model is discontinuous and the statistician knows this

but takes the wrong signals before and after the jump, then

nevereless it is possible to have the consistent estimation.

Problem. The theoretical model is

dXt =
[
h (t) 1I{t<ϑ} + g (t) 1I{t≥ϑ}

]
dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,

where ϑ ∈ Θ = (α, β), 0 < α < β < T . Suppose that h (t)− g (t) > 0

for t ∈ [α, β]. The observed stochastic process has a different equation

dXt =
[
[h (t) + q (t)] 1I{t<ϑ0} + [g (t) + r (t)] 1I{t≥ϑ0}

]
dt+ εdWt,

where q (t) and r (t) are some unknown functions.

We study the conditions on q (t) and r (t) which allow the consistent

estimation of the parameter ϑ0.
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The function Φ (ϑ) for ϑ < ϑ0 is

Φ (ϑ) =

∫ ϑ

0

q (t)
2
dt+

∫ ϑ0

ϑ

[h (t) + q (t)− g (t)]
2
dt+

∫ T

ϑ0

r (t)
2
dt.

Hence

dΦ (ϑ)

dϑ
= q (ϑ)

2 − [h (ϑ)− g (ϑ) + q (ϑ)]
2

= − (h (ϑ)− g (ϑ)) [h (ϑ)− g (ϑ) + 2q (ϑ)] .
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If the function

q (ϑ) >
g (ϑ)− h (ϑ)

2
, ϑ ∈ Θ, (1)

then for ϑ < ϑ0

dΦ (ϑ)

dϑ
< 0.

For ϑ > ϑ0 under condition

r (ϑ) <
h (ϑ)− g (ϑ)

2
(2)

we obtain the similar inequality

dΦ (ϑ)

dϑ
> 0.
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Therefore

ϑ̂ = arg inf
ϑ∈Θ

Φ(ϑ) = ϑ0

and we obtain the following result.

Proposition 2 If the conditions (1) and (2) are fulfilled then the

pseudo-MLE ϑ̂ε is consistent.

It can be shown that

ϑ̂ε − ϑ0
ε2

=⇒ û.

For the details see the similar problem in Section 5.3, K. 1994.
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Cusp vs smooth

Suppose that the model of observations choosen by the statistician

(theoretical model) is

dXt = Q (ϑ, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T.

The signal Q (ϑ, t) is supposed to be

Q (ϑ, t) = a |t− ϑ|κ , 0 ≤ t ≤ T,

where κ ∈ (0, 12 ) and ϑ ∈ Θ = (α < ϑ < β). As before we suppose

that 0 < α < β < T .

The observed process (real model) is

dXt = S (ϑ0, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,

where ϑ0 ∈ Θ is the true value and S (ϑ, ·) is sufficiently smooth.

56



Introduce the function

Φ(ϑ, ϑ̂) = ∥Q(ϑ, ·)− S (ϑ0, ·)∥2 − ∥Q(ϑ̂, ·)− S (ϑ0, ·) ∥2

and the conditions of regularity:

Condition M.

1. The parameter κ ∈
(
0, 12

)
.

2. The function S (ϑ, t) ∈ C2
ϑ.

3. The function Φ(ϑ, ϑ̂) for all ϑ0 ∈ Θ has a unique minimum at the

point ϑ̂ = ϑ̂ (ϑ0).

4. It’s second derivative

γ(ϑ̂) ≡ ∂2Φ(ϑ, ϑ̂)

∂ϑ2

∣∣∣∣∣
ϑ=ϑ̂

> 0

for all ϑ0 ∈ Θ.
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Let us denote

Ẑ (u) = exp

{
aWH (u)− γ(ϑ̂)

4
u2

}
, u ∈ R

Ẑo (u) = exp

{
wH (v)− v2

2

}
, v ∈ R

and define the random variables ζ̂, ζ̂o by the relations

Ẑ(ζ̂) = sup
u
Ẑ (u) , Ẑo(ζ̂o) = sup

v
Ẑo (v) .

Note that

ζ̂ =

(
2a

γ(ϑ̂)

) H
2H−1

ζ̂o.
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Theorem 3 Let the conditions M be fulfilled, then the estimator ϑ̂ε

converges to the value ϑ̂, has the limit distribution

ϑ̂ε − ϑ̂

ε
2

3−2κ

=⇒ ζ̂,

and for any p > 0

lim
ε→0

Eϑ0

∣∣∣∣∣ ϑ̂ε − ϑ̂

ε
2

3−2κ

∣∣∣∣∣
p

= Eϑ0

∣∣∣ζ̂∣∣∣p =

(
2a

γ(ϑ̂)

) pH
2H−1

E
∣∣∣ζ̂o∣∣∣p .

For the proof see Chernoyarov, Dachian, K. 2015.
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Discontinuous vs Cusp

Suppose that the model of observations choosen by the statistician is

dXt = sgn (t− ϑ) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,

where ϑ ∈ Θ = (α < ϑ < β) and 0 < α < β < T . The observed

process (real model) is

dXt = S (ϑ0, t) dt+ εdWt, X0 = 0, 0 ≤ t ≤ T,

where ϑ0 ∈ Θ is the true value and

S (ϑ0, ·) = sgn (t− ϑ0)
[
|t− ϑ0|κ 1I{|t−ϑ0|≤1} + 1I{|t−ϑ0|>1}

]
where κ ∈ (0, 12 ).
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Let us denote

Ẑ (u) = exp

{
W (u)− |u|κ+1

κ+ 1

}
, u ∈ R

and define the random variable ζ̂ by the relations

Ẑ(ζ̂) = sup
u
Ẑ (u) .

Below H = κ+ 1
2 is the Hurst constant.

Theorem 4 The estimator ϑ̂ε is consistent has the limit distribution

ϑ̂ε − ϑ0

ε
1
H

=⇒ ζ̂,

and for any p > 0 we have the convergence of p-moments.
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Note that if κ = κε → 0, then the limit (ε = 0) likelihood ratio

coincides with the LR in the discontinuous case. The

Kullback-Leibler distance between measures corresponding to the

theoretical and real models is

DK−L =
1

2ε2

∫ 1

−1

[Q (ϑ0, t)− S (ϑ0, t)]
2
dt

=
2κ2ε

ε2 (κε + 1) (2κε + 1)
≈ 2κ2ε

ε2
.

Hence if κε = ε1+γ with some γ > 0, then these two models

(theoretical and real) are asymptotically indistingushible. The case

κε = ε1−γ merits to be studied.

62



Let us put κε = ε1−γ and

φε = ε
1

κε+1 .

Then for the normalized likelihood ratio

Ẑε (u) = exp

{
W (u)− |u|κε+1

κε + 1

}
, u ∈ Uε =

(
α− ϑ0
φε

,
β − ϑ0
φε

)
we obtain the convergence

Ẑε (u) =⇒ Ẑ (u) = exp {W (u)− |u|}

Hence

ϑ̂ε − ϑ0
φε

=⇒ û

with the corresponding û.
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Poisson Proceses. Misspecification.
Discontinuous versus smooth

Let us consider the following families: theoretical intensity function

λ (ϑ, t) = λ (t) + λ0 (t) 1I{t≥ϑ}, ϑ ∈ (α, β) ,

where 0 < α < β < τ , inf{α<t<β} λ0 (t) > 0 and the real intensity

function is

λ∗ (ϑ0, t) = λ (t) + λ0 (t)

(
t− ϑ0
δ

+
1

2

)
1I{ϑ0− δ

2≤t≤ϑ0+
δ
2}

+ λ0 (t) 1I{t>ϑ0+
δ
2}.

Here ϑ0 ∈ (α, β). For ϑ ∈
(
ϑ0 − δ

2 , ϑ0 +
δ
2

)
the both families have

coinciding intensities outside of the interval
[
ϑ0 − δ

2 ≤ t ≤ ϑ0 +
δ
2

]
.

We have to estimate the change-point parameter ϑ.
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We suppose for simplicity that

λ (ϑ, t) = λ+ λ01I{t≥ϑ},

λ∗ (ϑ0, t) = λ+ λ0

(
t− ϑ0
δ

+
1

2

)
1I{ϑ0− δ

2≤t≤ϑ0+
δ
2} + λ01I{t>ϑ0+

δ
2}

respectively.

The difference between these two families is in the type of increasing

of intensity function from the value λ to λ+ λ0. The first family

corresponds to the change-point type intensity. Note that the

technical devices have difficulties to provide a signal with intensity

changing by a pure jump. The real systems have usually strongly

increasing front but with finite rate.
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The likelihood ratio (pseudo) is the discontinuous function

L (ϑ,Xn) = exp


n∑

j=1

∫ τ

0

lnλ (ϑ, t) dXj (t)− n

∫ τ

0

[λ (ϑ, t)− 1] dt


and the (pseudo) MLE ϑ̂n is defined by the same equation

L(ϑ̂n, X
n) = sup

ϑ∈Θ
L (ϑ,Xn) .

To define the limit of the MLE we have to find the value ϑ̂ which

minimizes the Kullback-Leibler distance

JK−L(ϑ̂) = inf
ϑ∈Θ

JK−L (ϑ) ,

where

JK−L (ϑ) =

∫ τ

0

[
λ+ λ01I{t≥ϑ} − λ∗ (ϑ0, t) ln

(
λ+ λ01I{t≥ϑ}

)]
dt.
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Therefore the solution of the equation J̇K−L(ϑ̂) = 0 is

ϑ̂ = ϑ0 −
δ

2
+ δ

(
1

ln
(
1 + λ0

λ

) − λ

λ0

)
.

The function Φ (x) = [ln (1 + x)]
−1 − x−1 ∈

(
0, 12

)
. We see that

ϑ̂ = ϑ̂ (δ) → ϑ0 as δ → 0 and that ϑ̂ ∈
(
ϑ0 − δ

2 , ϑ0
)
. Note that the

point ϑ̂ satisfies the equation

λ∗(ϑ0, ϑ̂) =
λ0

ln
(
1 + λ0

λ

) .
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Introduce the notations

Ẑ (u) = exp

{
W (u)− u2

2

}
, u ∈ R,

Ẑ(ξ̂) = sup
u
Ẑ (u) , a =

δ2/3[
λ0 ln

(
1 + λ0

λ

)]1/3
with double-sided Wiener process W (·), i.e.

W (u) =

 W1 (u) , u ≥ 0,

W2 (−u) , u ≤ 0,

where W1 (u) , u ≥ 0 and W1 (u) , u ≥ 0 are two independent Wiener

processes.
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Proposition 3 The pseudo-MLE ϑ̂n is “consistent”

Pϑ0 − lim
n→∞

ϑ̂n = ϑ̂

and for any p > 0 the convergences

n1/3
(
ϑ̂n − ϑ̂

)
=⇒ a ξ̂, np/3Eϑ0

∣∣∣ϑ̂n − ϑ̂
∣∣∣p −→ apE

∣∣∣ξ̂∣∣∣p
hold.
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Let us see what happens with the pseudo-BE in this situation. We

have the representaton

ϑ̃n =

∫ β

α
θp (θ)L (θ,Xn) dθ∫ β

α
p (θ)L (θ,Xn) dθ

= ϑ̂+ φn

∫
Un
up (θu)L (θu, X

n) du∫
Un
p (θu)L (θu, Xn) du

,

where we changed the variables θ = θu = ϑ̂+ φnu. Therefore we can

write

ϑ̃n − ϑ̂

φn
=

∫
Un
up (θu)Zn (u) du∫

Un
p (θ)Zn (u) du

=

∫
Un
uZn (u) du∫

Un
Zn (u) du

(1 + o (1))

=

∫
Un
uẐn (u)

√
nφnλ0γ du∫

Un
Ẑn (u)

√
nφnλ0γ du

(1 + o (1)) .
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The limit of the last ratio is an open problem. It probably coincides

with the limit of the following exppression∫
R u Ẑ (u)

√
nφnλ0γ du∫

R Ẑ (u)
√
nφnλ0γ du

=⇒ ξ̂

because the main contribution in the integral∫
R
u
(
eW (u)−u2

2

)√nφnλ0γ

du

is given by the maximal values W (ξ̂)− ξ̂2

2 . Therefore the pseudo-MLE

and pseudo-BE are asymptotically equivalent in this situation too.
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Smooth vs discontinuous

Let us consider the opposite situation, i.e., we suppose that the

theoretical intensity function is smooth:

λ (ϑ, t) = λ+ δ−1λ0

(
t− ϑ+

δ

2

)
1I{ϑ− δ

2≤t≤ϑ+ δ
2} + λ01I{t>ϑ+ δ

2},

where 0 < α < β < τ and the real intensity function is discontinuous:

λ∗ (ϑ0, t) = λ+ λ01I{t≥ϑ0}, ϑ0 ∈ (α, β) .

The value ϑ̂ minimizes the Kullback-Leibler distance

JK−L (ϑ) =

∫ ϑ0

0

[λ (ϑ, t)− λ lnλ (ϑ, t)] dt

+

∫ τ

ϑ0

[λ (ϑ, t)− (λ+ λ0) lnλ (ϑ, t)] dt.
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Hence, if we suppose that ϑ̂− δ
2 < ϑ0 < ϑ̂+ δ

2 then ϑ̂ is solution of

the equation

J̇K−L (ϑ) = −λ0
δ

∫ ϑ0

ϑ− δ
2

[
1− λ

λ (ϑ, t)

]
dt− λ0

δ

∫ ϑ+ δ
2

ϑ0

[
1− λ+ λ0

λ (ϑ, t)

]
dt = 0.

Let us denote

D(ϑ0, ϑ̂)
2 =

λ20
2δ2

∫ ϑ̂+ δ
2

ϑ̂− δ
2

λ∗ (ϑ0, t)[
λ+ λ0

δ

(
t− ϑ̂+ δ

2

)]2 dt
and put φn = (bn)

−1/2
, where b = D(ϑ0, ϑ̂)

2.
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Proposition 4 The pseudo-MLE ϑ̂n is “cosistent”

Pϑ0 − lim
n→∞

ϑ̂n = ϑ̂

and for any p > 0 we have the convergences

n1/2
(
ϑ̂n − ϑ̂

)
=⇒ N

(
0, D(ϑ0, ϑ̂)

−2
)
,

np/2Eϑ0

∣∣∣ϑ̂n − ϑ̂
∣∣∣p −→ D(ϑ0, ϑ̂)

−pE |ζ|p

hold. Here ζ ∼ N (0, 1).
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Discontinuous vs cusp

The next situation is in some sense the more close to the real

problem. Suppose that the theoretical intensity function assumed by

the statistician is of change-point type

λ (ϑ, t) = λ+ λ01I{t>ϑ}

but the real intensity function is of special cusp-type form

λ∗ (ϑ0, t) = λ+
λ0
2

[1 + sgn (t− ϑ0) |t− ϑ0|κ] 1I{|t−ϑ0|≤1} + λ01I{t>ϑ0+1},

where κ ∈
(
0, 12

)
. The choice of κ close to 0 allows to have a good

approximation of the indicator function.
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The more interesting case corresponds to the values

ϑ̂ ∈ (ϑ0 − 1, ϑ0 + 1). Then the value ϑ̂ which minimizes the

Kullback-Leibler distance as before satisfies the equation

λ∗(ϑ0, ϑ̂) =
λ0

ln
(
1 + λ0

λ

) .
Hence in the case ϑ̂ < ϑ0 we obtain

ϑ̂ = ϑ0 −

[
1− 2

(
1

ln
(
1 + λ0

λ

) − λ

λ0

)] 1
κ

.

Note that if λ0

λ takes small values then ϑ̂ ≈ ϑ0 because as x→ 0

1

ln (1 + x)
− 1

x
=
x− ln (1 + x)

x ln (1 + x)
=

x2

2 + o
(
x2
)

x
(
x− x2

2 + o (x2)
) =

1

2
+ o (1) .
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Below we put

b =

(
κ

2

∣∣∣ϑ̂− ϑ0

∣∣∣κ−1

√
λ0 ln

(
1 +

λ0
λ

))−2/3

.

Proposition 5 The pseudo-MLE ϑ̂n is “cosistent”

Pϑ0 − lim
n→∞

ϑ̂n = ϑ̂

and for any p > 0 we have the convergences

n1/3
(
ϑ̂n − ϑ̂

)
=⇒ b ξ̂,

np/3Eϑ0

∣∣∣ϑ̂n − ϑ̂
∣∣∣p −→ bpE

∣∣∣ξ̂∣∣∣p
hold.
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It is interesting to note that the rate n−1/3 is due to the form of the

Kullback-Leibler distance in the case of Poisson processes. The same

intensities considered as signals observed in the white Gaussian noise

provide a different rate. Indeed suppose that the observed process is

dXt = λ∗ (ϑ0, t) dt+ εndWt, 0 ≤ t ≤ τ

and the statistician estimates ϑ on the base of the theoretical model

dXt = λ (ϑ, t) dt+ εndWt, 0 ≤ t ≤ τ,

where the signals λ∗ (·) and λ (·) are defined aboveand εn = n−1/2.
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Then the value ϑ̂ which minimizes the Kullback-Leibler distance is

ϑ̂ = arg inf
ϑ∈Θ

∫ τ

0

[λ (ϑ, t)− λ∗ (ϑ0, t)]
2
dt = ϑ0.

The MLE in this problem has the following limit

n
1

κ+2

(
ϑ̂n − ϑ0

)
=⇒ ζ̂ = arg sup

u

{
W (u)− |u|κ+1

κ+ 1

}
.
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[5] Höpfner, R., Kutoyants, Yu.A. (2012) On frequency estimation

of periodic ergodic diffusion process. Probl. Inform. Transm., 48,

2, 127-141.

82



[6] Huber, O.J. (1981) Robust Statistics. Wiley.

[7] Ibragimov I.A., Has’minskii R.Z. (1975) An estimator of the

parameter of a signal in Gaussian white noise, Probl. Inform.

Transm., 10, 31-46.

[8] Ibragimov I.A., Has’minskii R.Z. (1975) Parameter estimation

for a discontinuous signal in white Gaussian noise, Probl.

Inform. Transm., 11, 203-212.

[9] Ibragimov, I.A. and Has’minskii R. Z. (1981) Statistical

Estimation - Asymptotic Theory. Springer-Verlag, New York.

[10] Kutoyants, Yu.A. (1977) Estimation of signal parameter in

Gaussian noise. Probl. Inform. Transm., 13, 4, 266-271.

[11] Kutoyants, Yu.A. (1994) Identification of Dynamical Systems

with Small Noise, Kluwer Academic Publisher, Dordrecht.

83



[12] Liptser, R.S. and Shiryaev, A.N. (2001) Statistics of Random

Processes, v. 1, 2-nd ed., Springer, N.Y.

[13] Novikov, A. and Kordzakhia, N. (2013) Pitman

estimators.Theory Probab. Appl., 57, 3, 521-529.

[14] Novikov, A., Kordzakhia, N. and Ling, T. (2014) On moments of

Pitman estimators. Theory Probab. Appl., 58, 4, 601-614.

[15] Rubin, H., Song, K. (1995) Exact computation of the asymptotic

efficiency of MLE of a dicontinuous signal in a GWN. Ann.

Statist. 23, 732–739.

[16] Stigler, S.M. (2010) The changing history of robustes. American

Statistician. 64, 4, 277-281.

[17] Terent’yev, A.(1968) Probability distribution of a time location

of an absolute maximum at the output of a synchronized filter.

Radioengineering and Electronics, 13, 652–657.

84


