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Outline

Framework: We consider a one-dimensional random walk in
i.i.d. random environment (RWRE) with a parametric
distribution.

Result: Based on a single observation of the path, we
provide a maximum likelihood estimation procedure for the
law of the environment.
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Definitions

Random environment on Z
I ω = {ωx}x∈Z i.i.d. with ωx ∈]0, 1[ and ωx ∼ µ,

I P = µ⊗Z law on ]0, 1[Z of ω and E expectation

Markov process conditional on the environment

For fixed ω, let X = {Xt}t∈N be the Markov chain on Z
starting at X0 = 0 and with transitions

Pω(Xt+1 = y |Xt = x) =

{
ωx if y = x + 1
1− ωx if y = x − 1

Pω is the measure on the path space of X given ω
(quenched law) and Eω corresponding expectation.
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Random walk in random environment (RWRE)

The (unconditional) law of X is the annealed law

P(·) = E(Pω(·)) =

∫
Pω(·)dP(ω),

with E the corresponding expectation.

Note that X is not a Markov process under P in general.
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Properties of RWRE

Consider the ”left/right” ratio

ρx =
1− ωx

ωx
, x ∈ Z

Solomon(1975) has proved the classification:

Recurrent case
If E(log ρ0) = 0, then

−∞ = lim inf
t→∞

Xt < lim sup
t→∞

Xt = +∞, P-a.s.

and Xt is null-recurrent.
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Transient case
if E(log ρ0) < 0, then

lim
t→∞

Xt = +∞, P-a.s.

Moreover, if Tn = inf{t ∈ N : Xt = n}, then

I Ballistic case: if E(ρ0) < 1, then Tn/n→ c P-a.s.
when n→∞.

I Sub-ballistic case: If E(ρ0) ≥ 1 and E(ρκ0) = 1 for
some 0 < κ ≤ 1 then (in general) Tn ∼ n1/κ.
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Statistical problem

Environment law estimation
Estimate µ from a single observation (Xt)0≤t≤T of a RWRE
path.

Assumptions

We suppose that µ = µθ? ∈ {µθ}θ∈Θ, where θ? ∈ Θ is an
unknown parameter, Θ ⊂ Rd compact.

Example (finitely supported law)

µ({ai},{pi}) =
m∑
i=1

piδai , Eρ0 =
m∑
i=1

pi log
1− ai
ai

.

We write Pθ, Pθ and so on for RWRE generated by µθ, and
P?, P?, . . . for θ = θ? (the true parameter to estimate).
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Moments estimation

O. Adelman and N. Enriquez (2004), Random walks in
random environment: what a single trajectory tells.

A nice family of estimators of moments of µθ? .

Example: first steps from each site ⇒ first moment.

Drawback:

I Which moments to estimate to recover µθ??

I Only some steps are used (loss of information).
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Maximum likelihood estimator

Fix a time T , a trajectory X[0,T ], and let Lx = Lx(T ) and
Rx = Rx(T ) be the number of left and right steps from
site x . Then,

Pω(X[0,T ]) =
∏
x∈Z

ωRx
x (1− ωx)Lx

and

Pθ(X[0,T ]) = Eθ
∏
x∈Z

ωRx
x (1− ωx)Lx =

∏
x∈Z

EθωRx
x (1− ωx)Lx =

∏
x∈Z

∫ 1

0
aRx (1− a)Lxdµθ(a).
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Let φθ be the function from N2 to R given by

φθ(x , y) = log

∫ 1

0
ax(1− a)ydµθ(a).

The criterion function θ 7→ `T (θ) is defined as

`T (θ) = log Pθ(X[0,T ]) =
∑
x∈Z

φθ(Rx , Lx),

and our estimator is

θ̂T ∈ Argmax
θ∈Θ

`T (θ).
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Aim

Study the convergence of θ̂T to θ?.

Method: Show that `T (θ) converges (after appropriate
normalisation) to some `(θ) with

Argmax
θ∈Θ

`(θ) = θ?

and apply classical M-estimation theory.

Question: where `(θ) comes from?
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Transient case

We take n ∈ N and T = Tn = inf{t ∈ N : Xt = n}.

Note that

I Only the visited sites contribute to `Tn(θ).

I The number of visited sites x < 0 is bounded (since X
is transient to the right).

I Moreover, Rx = Lx+1 + 1 for x = 0, 1, . . . , n − 1.

Hence

`Tn(θ) ≈
n−1∑
x=0

φθ(Lx+1 + 1, Lx).
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Underlying BPIRE I

Under Pθ, the sequence Ln, Ln−1, . . . , L0 has the same
distribution as a BPI denoted Z0, . . . ,Zn, and defined by

Z0 = 0 and Zk+1 =

Zk∑
i=0

ξk+1,i for k ≥ 0,

with {ξk,i} independent and

∀m ∈ N, Pω(ξk,i = m) = (1− ωk)mωk ,
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Underlying BPIRE II

Under Pθ, {Zn} is an irreducible positive recurrent
homogeneous Markov chain with the transition kernel

Qθ(x , y) =

(
x + y

x

)∫ 1

0
ax+1(1− a)ydµθ(a).

Consequence

1

n
`Tn(θ) ∼ 1

n

n−1∑
k=0

φθ(Zk + 1,Zk+1) under P?

and the right-hand side is (up to constants) the likelihood of
a Markov process.

It follows that φθ(Zk + 1,Zk+1) satisfies a law of large
numbers.
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We deduce that `Tn(θ)/n converges in P?-probability to a
deterministic limit `(θ):

`(θ) = E?φθ(Z̃0 + 1, Z̃1)

Ballistic case
Z̃k has a finite first order moment.

Sub-ballistic case
We fix θ0 ∈ Θ and replace `Tn(θ) with

`Tn(θ)−`Tn(θ0) ∼
n−1∑
k=0

(φθ(Zk + 1,Zk+1)− φθ0(Zk + 1,Zk+1))

and assume that φθ − φθ0 is uniformly integrable (true in
most cases).

Using the almost linear nature of φθ, we prove that `(θ) is
finite, with a maximum at θ?.
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Results: consistency, asymptotic normality and
efficiency

The standard M-estimators theory then applies. Under
appropriate (classical) assumptions, in the transient case, we
establish that MLE satisfies

I Consistency: limn→+∞ θ̂Tn = θ?, P?-a.s.

I Asymptotic normality:√
n(θ̂Tn − θ?) P?−dist.N (0,Σ−1

θ? ).

I Efficiency: Σθ? is the Fisher information matrix.

Hence the rate of convergence is of the order
√
T in the

ballistic case, and Tκ/2 in the sub-ballistic case (κ ≤ 1).
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Recurrent case
We consider the distributions of the form

µ(a,p) =
d∑

i=1

piδai

and assume that the true parameter θ? = (a?,p?) belongs to
a compact Θ ⊂ (0, 1)2d satisfying

Assumption (Identifiability)

For any θ = (a,p) in Θ,

0 < a1 < a2 < . . . < ad < 1

Assumption (Recurrent environment)

E?ρ0 =
d∑

i=1

p?i log
1− a?i
a?i

= 0.
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Example (Temkin)

Let

µθ =
1

2
δa +

1

2
δ1−a.

Here, the unknown parameter is a ∈ Θ ⊂ (0, 1/2).
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Properties of recurrent RWRE

An important property of recurrent RWRE is localization:
the RE creates traps where the walk spends much time.

A useful trap visualization is the potential landscape V
where V = {V (x) : x ∈ Z} is defined by

V (x) =

{ ∑x
y=0 log ρy − log ρ0 if x ≥ 0

−
∑0

y=x+1 log ρy if x < 0

The environment {ωx} can be recovered from its potential:

ωx =
exp(−V (x))

exp(−V (x)) + exp(−V (x − 1))
.



Main valleys

V (x)

x

bn
cn

log n +
√

log n

Figure :
cn = min

{
x ≥ 0 : V (x)−min0≤y≤x V (y) ≥ log n + (log n)1/2

}
,

bn = min {x ≥ 0 : V (x) = min0≤y≤cn V (y)}.
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Classical localization results

Basic localization properties of the RW are known since the
works of Sinai (1982), Golosov (1984) and others. Namely,

I with an overwhelming probability, the (reflected) walk
X[0,n] stays between 0 and cn (Arrhenius law);

I bn/ log2 n and cn/ log2 n converge in law to some
non-degenerate random variables;

I moreover, (Xn − bn)/ log2 n converges to 0 in
probability.

For MLE, we need to describe the distribution of local times
of Xn − bn.
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Infinite valley

Let Ṽ = {Ṽ (x) : x ∈ Z} be a collection of random variables
distributed as V “conditioned” to stay positive. For each Ṽ ,
let ω̃ be the corresponding environment on Z.

Let ν(x) = ν+(x) + ν−(x) be the invariant measure of the
corresponding (ergodic) Markov chain X̃n on Z, where

ν+(x) =
e−Ṽ (x)

2
∑

z∈Z e
−Ṽ (z)

and ν−(x) =
e−Ṽ (x−1)

2
∑

z∈Z e
−Ṽ (z)

.

Then ω̃x = ν+(x)/ν(x).

Remark
The possible values of ω̃ are those of ω, though their
distributions are different (not i.i.d.)
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Gantert-Peres-Shi theorem

Put ν+
n (x) = Rx/n, ν−n (x) = Lx/n.

Theorem (Gantert-Peres-Shi, 2010)

The distributions of

{(ν+
n (x + bn), ν−n (x + bn)) : x ∈ Z}

converge weakly to the distribution of

{(ν+(x), ν−(x)) : x ∈ Z}.

As a consequence, for each strongly continuous functional f
which is translation invariant, we have

f
(
{(ν+

n , ν
−
n )}

) law−−−→
n→∞

f
(
{(ν+, ν−)}

)
.
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MLE

The annealed log-likelihood `n(θ) = log Pθ(X[0,n]) in our
case is given by

`n(θ) =
∑
x∈Z

log

[
d∑

i=1

aRx
i (1− ai )

Lxpi

]

Recurrence imply Rx , Lx →∞ as n→∞, so

I the branching explodes;

I but we can apply Laplace methods.

Denote by Rn the range of the walk:

Rn =
{
x : ∃t ≤ n, Xt = x

}
Recall that |Rn| = OP?(log2 n).
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Log-likelihood decomposition

For any x in Rn, define the random integer

ı̂ = ı̂(a, n, x) = Argmax
i

{
aRx
i (1− ai )

Lx
}

Then

`n(θ) =
∑
x∈Z

(Rx log aı̂ + Lx log(1− aı̂)) +
∑
x∈Rn

log pı̂

+
∑
x∈Rn

log

1 +
∑
i 6=ı̂

(
ai
aı̂

)Rx
(

1− ai
1− aı̂

)Lx pi
pı̂


= Mn + Kn + rn = O(n) + OP?(log2 n) + oP?(log2 n)
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Estimators

We define a MLE as

θ̂n = (ân, p̂n) = Argmax
(a,p)∈Θ

`n(θ),

and a (pseudo) MLE (an,pn) as
an = Argmax

a∈Θa

Mn(a),

pn = Argmax
p

Kn(an,p).

Theorem
Both the the MPL estimator (an,pn) and ML estimator
(ân, p̂n) converge in P?-probability to the true parameter
value θ?.
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Cross-entropy

Recall the properties of the cross-entropy H(p,q) of two
(finitely supported) probability measures:

H(p,q) = −Ep log q = −
∑
i

pi log qi

H(p) = H(p,p) < H(p,q) if p 6= q

In particular, for 0 < p, q < 1

max
q
{p log q + (1− p) log(1− q)}

= p log p + (1− p) log(1− p)
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Support estimation

Recall that ν+
n (x) = Rx/n, ν−n = Lx/n and ω̃ = ν+/ν. So

Mn = n
∑
x∈Z

max
i

{
ν+
n (x) log ai + ν−n (x) log(1− ai )

}
and GPS theorem yields

Mn

n
law−−−→
n→∞

M(a, ν+, ν−)

=
∑
x∈Z

ν(x) max
i
{ω̃x log ai + (1− ω̃x) log(1− ai )}

= −
∑
x∈Z

ν(x) max
i

H (ω̃x , ai )
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Using ω̃x ∈ {a?i }, it’s easily seen that for a 6= a?,

M(a) < M(a?) = −
∑
x∈Z

ν(x)H (ω̃x) .

Finally,

Mn(a?)−Mn(a)

n
law−−−→
n→∞

M(a?)−M(a) > 0

whence it can be deduced that

Argmax
a∈Θ

Mn(a) = an → a?.
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Probability estimation

Recall the definition of pn:

pn = Argmax
p

∑
x∈Rn

log pı̂ = Argmax
p

d∑
i=1

|Rn(i)|
|Rn|

log pi ,

where

ı̂ = Argmax
i

{Rx log(an)i + Lx log(1− (an)i )}

and Rn(i) = {x ∈ Rn : ı̂ = i}.

By the law of large numbers, Rx/(Rx + Lx)→ ωx , hence
ωx = a?ı̂ for a ≈ a? if n is large enough.

Since an → a?, we get |Rn(i)| → #{x ∈ Rn : ωx = a?i },
whence |Rn(·)|/|Rn| = pn → p?.
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Recall the definition of pn:

pn = Argmax
p

∑
x∈Rn

log pı̂ = Argmax
p

d∑
i=1

|Rn(i)|
|Rn|

log pi ,

where

ı̂ = Argmax
i

{Rx log(an)i + Lx log(1− (an)i )}

and Rn(i) = {x ∈ Rn : ı̂ = i}.

By the law of large numbers, Rx/(Rx + Lx)→ ωx , hence
ωx = a?ı̂ for a ≈ a? if n is large enough.

Since an → a?, we get |Rn(i)| → #{x ∈ Rn : ωx = a?i },
whence |Rn(·)|/|Rn| = pn → p?.
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Simulations

Example (Temkin)
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Figure : Boxplots of our estimator (white) and Adelman and
Enriquez estimator (grey). The true value of θ? is 0.3.
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Extensions

I P. Andreoletti, D. Loukianova, C. Matias (2015):
Hidden Markov model for parameter estimation of a
random walk in a Markov environment.

I R. Diel, M. Lerasle (2016): Non parametric estimation
for random walks in random environment.
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