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Introduction 

Determination of the Gaussian random processes limiting 
characteristics is an important task in the fields of statistical radio 
physics and radio engineering, reliability theory, analysis of the 
extreme deviations and stability of technical systems, etc. In a 
number of studies, it is shown that the form of the distribution 
function  

( )
[ ]

( ) ]sup[
,0

htPhF
Tt

<ξ=
∈

of the absolute maximum of the Gaussian random process       
depends on its continuous derivative. Below, the general formulas 
for distribution functions of the absolute maximum of the non-
stationary differentiable and nondifferentiable Gaussian random 
process are presented. 

( )tξ
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Distribution of the absolute maximum of the 
differentiable Gaussian random process 

Let us consider the non-stationary Gaussian random process  ( )tξ

( ):tξ ( ) ( )ttm ξ= ( ) ( ) ( )[ ] ( ) ( )[ ]221121, tmttmtttB −ξ−ξ=

and 

( ) , tξ ( )tξ are rms-continuous  

We designate                 as the average numbers of the outliers of the 
realization          beyond the h level and within the elementary interval 

( )th,Π
( )tξ [ ]dttt +,

We then presuppose that the threshold h is great enough, i.e.  

( ) ( )ttmh σ>>− [ ]Tt ,0∈ ( ) ( )ttBt ,2 =σ

In that case, the outliers flow of the realization               beyond the h level is 
reduced to the Poisson one. And the outliers for various elementary intervals 
will be approximately statistically independent.  

( )tξ
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Therefore, the probability of the h threshold noncrossing is equal to  

[ ]
( ) ( )[ ], ~exp]sup[

,0
hhtP

Tt
Π−≈<ξ

∈
( ) ( )∫ Π=Π

T
dtthh

0
 ,~

The general formula for the average number of outliers of the non-stationary 
Gaussian random process is known:  

( ) ( ) ( )[ ] ( )[ ] ( ){ }
( )[ ] ( ) ( )[ ]{ }.  22exp 
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In general, the function                                is not a nondecreasing function of h 
[ ]

( ) ]sup[
,0

htP
Tt

<ξ
∈

Therefore, for an arbitrary h the following expression can be used as an 
approximation for the distribution function of the absolute maximum of the 
process  ( )tξ

( ) ( )[ ]






<
≥Π−

≈
.                  , 0 
,  , ~exp 

min

min

hh
hhhhF

Here           is the least value of h, for which the inequality                               is 
satisfied under any 

minh ( ) ( )ε+Π>Π hh ~~

0>ε

If values h and T are small, then this approximation can be rather crude. 
Since under                the distribution of the largest values of the process  
converges to the Gaussian distribution and we can use the approximation of 
the type  

0→T ( )tξ



6 

( ) ( ) ( )[ ]
( ) ( )[ ]





<Π−

≥Π−
≈

,  , ~exp 

,           , ~exp 
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where ( ) ( )( ) ( )[ ]00 σ−Φ= mhhFG

If Gaussian random process is stationary one, i.e. 

( ) ,mtm = ( ) ,22 σ=σ t ( ) ( )1221, ttBttB −=
then we have 

( )
( ) ( )

( )











<







π
α

−

≥






















σ
−

−
π
α

−
≈

.                             , 
2

exp 

,   , 
2

exp
2

exp 2

2

mhmF

mhmhhF
hF

G

G

Here ,cT τ=α ( )
0

22

=τ



 ττ−σ=τ dBdc



7 

Distribution of the absolute maximum of the 
nondifferentiable Gaussian random process 

Let us consider nondifferentiable Gaussian random process            with initial 
probability density 

( )tξ

( ) ( ) , 
2

exp
2

10; 2
0

2
0

0 











σ
−

−
πσ

=
mxxw

( )00 mm =

( )022
0 σ=σ

We are now focused on special but important case, when the process            is 
Markov random process with the constant drift and diffusion coefficients  

( )tξ

( ) ( )[ ] ( ) ( )[ ], 0sup >η=⇒<ξ= tPhFhtPhF [ ]Tt ,0∈

where ( ) ( )tht ξ−=η

Then we can write down  
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Here                is the one-dimensional probability density of the random process   
         realizations which have never reached the borders               and            
within the interval 

( )tzw ;η
( )tη 0=z

( ) ( )[ ] ( )∫
∞

η=>η=
0

 ;0 dzTzwtPhF

∞=z
[ ]t,0

Due to the Markovian nature of the process         , the function                   can 
be found from the solution of the direct Fokker-Planck-Kolmogorov equation:  

( )tη ( )tzw ;η

( ) ( )[ ] ( )[ ]tzwK
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under the starting condition and the boundary conditions  
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As a result, we have 
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And the distribution function for the absolute maximum of Gaussian Markov 
process           with the constant drift          and diffusion          coefficients 
takes the form of  
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When Gaussian Markov or local Markov random process     is the 
stationary one, then the required distribution function can be found in the 
following way. As shown by R.L. Stratonovich 

( )tξ

[ ]
( ) ( )ThtP

Tt
ρ−≈<ξ

∈
exp]sup[

,0

Where                                and                is the stationary probability density of  

 
the random process 

( )∫=
ρ

h

x st xw
dx

K
0

2

21 ( )xwst

( )tξ

This formula was obtained for the case 

12 2
02 >>σTK and ( ) 1<<hwst ( )0mh >>

The value of          is chosen in the region of maximum probability of the   
process values, so that we can assume that 

0x ( )tξ
00 mx =
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,    

,  

Using the asymptotic Laplace formula, we obtain the following 
expression for              :  ∞→h

( )[ ] ( )[ ] 1  2exp221 12
0

2
0

02

3
0 −Ο+σ−

−
πσ

=
ρ

hmh
mhK

where                denotes terms of the order ( )1−Ο h h1

Therefore, for large h 
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Tt
δϕ−≈<ξ
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,0

where ( ) ( ) ( )
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The accuracy of this approximation increases with δ and h.  



Since                       is a nondecreasing function only under                  , for 
the distribution function of the absolute maximum of the process        we 
use the approximation  

( )[ ]hδϕ−exp minhh ≥
( )tξ

( ) ( )[ ]




<
≥δϕ−

=
,                   , 0 
,  , exp 

min

min

hh
hhh

hF

where         is the least value of h for which the inequality                    is 
satisfied under any           . It is easy to see that 

minh ( ) ( )ε+ϕ>ϕ hh
0>ε 00min σ+= mh

For not very large values of δ and h, the last expression can be 
somewhat refined by writing down  

( ) ( ) ( )[ ]
( ) ( )[ ]




<δϕ−
≥δϕ−

≈
,  , exp 
,            , exp 

minminmin

min

hhhhF
hhhhF

hF
G

G

where                                            . This approximation is asymptotically 
accurate for both                  and 

( ) ( )( ) ( )[ ]00 σ−Φ= mhhFG
12 ∞→δ 0→δ
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CONCLUSION 

The presented techniques allows finding out the distribution laws for 
the absolute maximum of the non-stationary Gaussian random 
processes, and these laws can be applied, with a corresponding 
generalization, for the determination of the limiting characteristics of 
the non-Gaussain random processes. The form of the distribution law 
for the absolute maximum depends on the fact whether the random 
process is differentiable, or nondifferentiable one. 

Comparison with experimental data produced during the simulation in a 
number of particular cases shows us that the introduced formulas 
successfully describe the true distributions within a wide range of the 
random processes parameters values (for example, for differentiable 
stationary process – under arbitrary α and            ; for non-
differentiable stationary process – under            and                 ).  

σ+≥ mh
5≥δ minhh ≥
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Thank you for your attention! 
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