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1. Introduction

Sequential hypotheses testing

Given two hypotheses about some process X to distinguish:

Hypothesis Hy Hypothesis Hy

Xt A

X, < Some decision rule (7,d)

\
7

0 T t
e 7isan (F; );>0-adapted st. time, where #X = o{X,, s < t}

e dis an .7, -measurable random variable taking two values correspond-
ing to the hypothesis to accept
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Each procedure of sequential testing consists of the decision rule (7, d).

e How to choose (7,d)?
R(r,d)=Eler+W(d,...)] — (ing),
where ¢ > 0 is some constant interpreted as a payment for the obser-

vations and W (...) is responsible for the penalties because of a wrong
terminal decision.

e How to solve?

Sequential testing problem

0

Optimal stopping problem

0

Free-boundary problem
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2. Problem formulation for a Brownian bridge

Model

Given an observable process
X;=pubt+BY, 0<t<1,

BY being the unique strong solution to the following SDE
—B} 0
1 tdt—i—dBt, By=0, 0<t<l1

e All processes and random variables are considered on some probability-
statistical space (Q; #; P, 7 € [0,1])

dB? =

e B, is a standard Wiener process, B? is a standard Brownian bridge
process, 1 # 0 is some known constant, 6 is a random variable s.t.
Pr(0=1)=mand P(#=0)=1—7

e By (or BY) and 6§ are independent and ¢ cannot be observed directly

but through the process X;
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Aim
We would like to test sequentially two simple hypotheses about the pres-
ence of a drift coefficient:

Hyp:0=0 and H;:0=1

AV

0.0 0.2 04 06 0.8 10 0.0 0.2 0.4 06 08 1.0

Figure 1: X; = BY Figure 2: X, = ut + BY

4/40



Risk criterion

We will say that the decision rule is optimal if it minimizes the risk

V(r) = inf Ex (7 +al(d=0,0 =1) +bl(d=1,0 = 0)),

(1.d)
where E; denotes the expectation w.r.t. measure P, ¢,a,b > 0.
Using standard technique (A. N. Shiryaev (1963)) one can show that the
initial problem can be reduced to the optimal stopping problem

V(r) = irTlf Ex[er + amr AD(1 — 7,)] (: iIT1f Exler + G(ﬂ'.r)})

1, if m2>r

dr = _
{0, it <7

for the aposteriori probability process 7 = P, (9 = 1|ﬁtX), 0<t<1,
with P (mp=m) =1and r =0/(a +b).
Remark: G(r) = max (am A b(1 —))
mel0,1]
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3. Results

Theorem
1. The optimal decision rule is given by the pair (7%, d*) with
T =inf{0 <t < 1w ¢ (9o(t), 91 ()},

5 1 (accept Hy), if mm« = g1(77)
o (accept Hy), if mr+ = go(77)

where the boundaries (go, g1) can be characterized as a unique solution
to the system of non-linear integral equations (i = 0, 1)

cz:(—l)j+1 / Pe.gi(t) (Trfi(z) < gj(t+ u)) du = ag;(t) Nb(1 — gi(t))
0
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2. The explicit expression for these probabilities is given by

' VI—tJ1—t—u y
gl(t)¢>< 1/u >
1—gi(t) gj(t+u) p/u
m( gi(t) 1gj(t+u>_2\/1—t\/1—t—u)+
' VI—tJy1—t—u "
<1gl<t>><1>( s )
1n<1_gi(t) g;(t +u) p/u )
git) 1—gjtt+u) 2/T—tJ/1—t—u

7/40



3. The optimal pair of boundaries (go, g1) has the following properties:
go: [0,1] — [0,1] is decreasing and go(1) =0
g1:10,1] — [0,1] s increasing and g;(1) =1

Besides, the following inequalities are true

t t
<go(t) <My | ——
m0<1t> go(t) 0<1t)<7“
<M ! <ag1(t) < t
r < <mi|{\——],
AVETY 1ot

Provided a = b, we have Ml(t) =1- Mo(t) and my(t) = 1 — mo(t)
and the asymptotic behaviour as ¢ 1 1 is

o(t) = cy/1+8/pu?—1 o~ 1/(1-1) ~1/(1—t)
0 +o(e )
a\/14+8/u?+1

Mo(t) = iza(l — 24 o((1— 1)),

)
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The optimal stopping boundary The optimal stopping boundary
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4. Some known results

1. The Wiener sequential testing problem with finite horizon

(Gapeev and Peskir, 2003)

e Model:

Xy =pot+ B, 0<t<1

— All processes and random variables are considered on some probability-
statistical space (92;.%; P, 7 € [0,1])

— By is a standard Wiener process, 6 is a random variable such that
P-(0 =1) = mand Pr(6 =0) =1—m, pu # 0 is some known
constant

— By and 0 are independent and cannot be observed directly, but through
the process X,
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e Goal:
Hp:0=0 Hy:0=1
e Risk criterion:
V(r) = (iTr’l(g) Erlet+al(d=0,0=1)+b1(d=1,0 =0)]

4
V(r) = igf Ex e 4+ amr AND(1 — 77)]

7= 1, if m2>r
o, i me<vr

for the aposteriori probability process m; = P, (9 = 1|9}X), 0<
with P (mp =7) = 1.
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e Solution:

The optimal decision rule is given by the pair (7%, d*), where

T =inf{0<t<1:m ¢ (go(t), 1(t)},

e 1 (accept Hy), if w0+ = g1(77)
o (accept Hy), if m = go(77)
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2. Chernoff’s problem (Zhitlukhin and Muravlev, 2012)

e Model:
Xy =put+ By, t=0,
with p ~ N (o, 02) independent of B = (By)io being the standard
Wiener process.
e Goal:
Hy: n>0 Hi:p<0
e Risk criterion:
R(7,d) = E[eT + k|p|1(d # sgn(p))] — inf,

(1.d)

where ¢, k > 0 are some fixed constants, d is a r.v. taking values {—1,1}
only, and sgn(0) = —1.
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e Solution:

a*(t)
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5. Scheme of the Proof

Step 1: dynamic of the aposteriori probability process

The general Bayes formula says that the aposteriori probability process
can be expressed through the density process ¢; = 45t L (FX) as follows:

Here Po(-) = Px(-|0 = 0) and P1(-) = Px(-|0 = 1).

Due to the local absolute continuity (Liptser&Shiryaev) of measures Py
and P;, we see that ¢; admits the representation

Iz poff2Xs —p
= X
e ([ *2/()(1—3) ds)
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Hence, it is easy to check that

X
dmy = 7rt(1—7rt)1 /i tht+<7Tt(1 - Wt)(lﬂ_iz)z — (1 — ) a /i t)2> dt

e Difficulty: X} is not a diffusion-type process but an It6 one

0 — X
ax, = M=%
11—t

e Solution: the usage of an innovation process By, i.e.

t
_ _X
Bt:Xt—/ %ds
0 — S

dt + dB;

where (By, Z7X) appears to be a Bm and %X = .ZF for all ¢ € [0, 1].

- X _
s dX, =P T L aB,,  dmy =

T 1_t7rt(1—7rt)dBt, Ty = .
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e The optimal stopping problem to solve

V(t,ﬂ') = inf tEt,WG(t+Tv7Tt+T)7

o<r<1—
with the function G(t,7) = ¢t + am A b(1 — 7) [= ct + G(7)] for all
(t,m) € [0,1] x [0,1]. Under measure P;(m = m) = 1 the process
(T¢45)o<s<1—¢ is the solution to the SDE

u -
dmiys = ; Tips(1 — Tiqs)dBeys, m =,

1—t— s

e Remark: since the function G is bounded and continuous on [0, 1] x
[0, 1], it follows from the general theory that the optimal stopping time
in the considered problem exists.
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Step 2: change of time and change of space

Method: let us assume that some process Y satisfies the SDE
dYy = b(t,Y)dt + o(t,Y;)dB, Yo = yo.

e Assumptions: T(t) € C1, T(t) /, ¥(t,y) € C1? and 3‘1’8(524) >0

e Change of time and change of space:

n="¥(y)
v="T(t)

e Notations: a(t,y) = o(t,v),

2

Salt, y) TGt + b(t, y) So) + L
B<V7 77) = T (t) 5

ot
2

a(t,y) <a\1;8(;,y))

A(I/, 77) = T (t)
ot
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e Trasformation: N N
L= V(T0), Yy,
T(v) = inf{t: T(t) = v}
So, Y with characteristics (b, ) ~ Y with characteristics (B,Y) s.t.
dY, = B(v,Y,)dv + 2(v,Y,)dB,,
where 2 = A and B = (B,),>0 is a Wiener process.
Application

t
=Y, V=1Tp (t,y) €[0,1) x [0,1]

., () e Ry x [0,1]

T v V€R+,

%0:%, V6R+

o]
S -

A7, = 7, (1 — 7,)d
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Transformed optimal stopping problem

V(r,7) = inf E,zG(v+0,7010),

~ cv
Gv,m)=——+4an Ab(1 —7) | =
R =7, ar o= 7) (= 5 + 6P
where P, (7, = ) = 1 and infimum is taken over all stopping times o
adapted to the natural filtration generated by the process (T,¢)c>o0-
e Lagrange-Mayer form:

~ 7 dg T
V(V, 7T) = ol_gf EZ/7T <C/(; m + G(V, TFV_H;))

for (v,7) € Ry x [0, 1]
e Note: one-to-one correspondence of Kolmogorov's time-space change

guarantees the coincidence of the filtrations %] = ff(t)
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Step 3: structure of the optimal stopping time

One can find that:

e it is never optimal to stop on the line R x {r} with r = arg max G(m)

the map m — V (¢, ) is concave for every t > 0

e there exists boundaries go(t) < r < gi1(¢t) for t € Ry s.t.
© the continuation set is given by

C={(t,m) e Ry x[0,1]: m € (90(t), 91(¢))}

o the stopping set is the closure of the set

D ={(t,m) e Ry x [0,1]: m € [0,g0(¢)) U (g1(¢), 1]}
the continuation set C' is open and the stopping set D is closed

go(1) =0and g1(1) =1
Remark: V' (¢, ) has to be Isc (in fact, V' is continuous!), whereas G(t, )
has to be usc
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Step 4: monotonicity of the boundaries

It follows from the fact that for arbirary numbers t5 > t; on R,

V(tg,ﬂ') - G(tg,ﬂ') < V(tl,ﬂ') - G(tl,ﬂ')

T A T A

(t2, ) V
[C— - —— — - - C
(tlv 7‘—)
A I R
C (tla 7T) (t27 7T)

N D N
0 oty ; 0 t ty f
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Denote through o(t1,7) and o(t2,m) the optimal stopping moments
in the correspondent problems. Then we have the following chain of
inequalities:

o(ta2,m)
ds
V(tg, W)—G(tQ, 7T) = E C / m + G(Trt2+a-(t277r)) — G(ﬂ')
0
o(t1,m)
ds
<E|c Attt + G (g o(ty,m) — G(m) | <
0
o(t1,m)
ds
Elc m + G(Wt1+a(t1,7r)) = G(m) | =V(t,m)-G(t1, )
0

Hence, if the point (¢, 7) € C for some 7 then it is true that
V(t,m) —Gt,m) <V({t',7m)—G{Ht',m) <0forallt >t = (t,7) € C.
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Step 5: continuity of V (¢, )

For the continuity of V' (¢, w) as a mapping (t,7) — V (¢, 7) on Ry x|0, 1]
to be proved it is enough to verify

m — V(tg,m) is continuos in g

t — V(t,m) is continuous in to uniformly over 7w € [mg — d, o + I]

7w — V(t,7) is concave ~ the first assertion holds
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For the second one we have the following

0< V(te,m) = V(t,m) <

-U(tl,ﬂ) J ]
S
) e O e -
0
_U(tl,ﬂ) J ]
S
| T rap T Tetn)| =
0
o(t1,m)
1 1 cto cty
Ex - ds+ - — 0
/ <(1+t2+s)2 (1+t1+s)2> § <1+t2 1+t1>
0
as to | t1.
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Step 6: smooth fit principle

Smooth fit

v

7w — V(t,m) belongsto C' on the boundaries (go,g1)

e For any point (t,7) € Ry x (0,1) such that 7 = go(t), and for all
e >0 with 7 <7+ ¢ < r we have
V(t,m+¢e)—V(t,m) . G(t,m+¢) — G(t,m)

X
9 g

JelO

otv oG
<
on (t,m) < on (t,7)

e The reverse inequality holds (but the proof is much trickier)

oV oG
- > 2
(t;m) > S 2(t,m)
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Step 7: restraints on the optimal boundaries

Let us introduce two time-homogeneous optimal stopping problems

H(v,m;c) = inf Ex <c/ 1d¢ + G(V,ﬁ,,))
O’ZO 0

20

K(v,m;¢) = inf Ex < / e~Sd¢ + e_”G(V,?TU)> .
0
One can easily check validity of the following relations

K (\x,%;c . e_(1+”)> <V(,7) < H(w,me (1+v)7?)

General theory says that C = {(v,7): V(v,7) < G(v,7)} and
D ={(v,7): V(v,7) = G(v,7)}. Hence, we conclude that
mg (v) < Go(v) < My (v),
M{T(v) <

where v(t) =t(1 —t)~! forall t €[0,1)
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Step 8: continuity of the boundaries (go, g1)

o Continuity of g;(t) from the left

Let us fix some t and concider a sequence of t,, 1t as n — oo. The
limit lim,, oo g;(t,,) exists (we invoke the monotonicity argument here)
and equals g;(t—). Since the points (t,,g;(t,)) € D for all n > 1 and
D is a close set we have that (¢, g;(t—)) € D, as well. However, using
the structer of the set D it is easy to see that go(t) > go(t—) and
91(t) < g1(t—). The reverse inequalities are obvious due to increasing
and decreasing of the boundaries g;(t). Thus, we have

gi(t—) = gi(t) forall t>0

Remainder:

D ={(t,m): m € [0,90(t)) U (g1(£), 1]}
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e Continuity from the right

T
(t*a gO(t*))
\\t‘ (t/7 ,n-/)
(o) b
L
; t
V(t7 ﬂ-)’w:go(t)+ 1+ t+a90(t)7 V(t7 ﬂ—)‘ﬂ'_gl(t)f - m—i_b(l_gl (t))
ov 1%
o =a, - =-b
or m=go(t)+ on m=g1(t)—

These allow us to apply the Newton-Leibniz formula for all (¢,7) € R

T U 2 2
V() — G(t,m) = / / ((95 _ af) (1, v)dvdu
go(t) /go(t) om om
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It can be shown that
o %—‘{(t,w) > 0 for all (t,7) € C
e the function V (¢, ) solves the equation

LV(t,m)=0 forall (t,7)eC

N2
Forall t, <t <, go(t') < m < 7’ with § being small enough, s > 0
82V(t ) 2 1 av(t )< 28 c
—_— mT) =——-——— e X S5/
on2 ™" prm(l—m)2 ot P2 (1+t+s)?

20 c (' — go(t"))?

V() -G, ") <

2 (1t s)? 2
Yt it
, , 26 c (1! — go(te+))?
* - * 9 g D)
V(te,m') — G(ty, ") 2t o) 5
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Step 9: free-boundary problem
Summarizing the facts proved, we have:
T =inf{0< s <1 —t:ms & (go(t+5),91(t+9))}

(the infimum of an empty set is supposed to be equal to 1 — t), where
the pair (go, g1) has the following properties:

go: [0,1] — [0,1] is continuous and decreasing

g1:10,1] — [0,1] is continuous and increasing

t t
— ] < < e <
mO(l—t) \go(t)\M()(l_t) <r forall 0<t<1
1—1¢ 1—1¢
90(1) :07 gl(l) =1

m;(v) and M;(v), i = 0,1, being the solutions of two different systems
of transcendental equations.

t t
7”<M1< ><gl(t)<m1<> forall 0<t<1
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The infinitesimal operator L of the process (¢, 7;) is defined as:

— )2 0%
i) = (L T2 o, pe oy

e The free-boundary problem:
(LV) (t,m) =0, for (t,m)eC

V(tvﬂ)lw go(t)+ — ct + agO(t)’ V(tvﬂ—)‘wzgl(t)— = ct+ b(l - gl(t»

oV ov
o (t 7T)‘7r—go O+ — a, 8771'(75’ 7T)|7T=91(t)_ =—b

Vt,m) < G(t,m) for (t,m)eC
V(t,m) =G(t,m) for (t,m)€ D,
with G(¢t,7) = ¢t + am A b(1 — 7) and the sets C' and D given by
= inf{(t,7) € [0,1) x [0,1]: 7 € (go(t), 91 ()},
= inf{(t,7) € [0,1) x [0,1]: 7 € [0, go(t)
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e By Peskir's change-of-variable formula with local time on curves:

V(t+ s, mys) = V(t,m)+

/ (LV) (t + v, Tgou) V(o # go(t + w), Mo # 91(t + u))dut
0

Z / Vit + 1, 7osut) 4+ Vit + 1t Tosn—)) 1 (Tose = gs(t + u))du-t
=0

1
(4w, g t) + Va(t + u, Mgy —)) LT = gi(t + ) )dmey,

l\D\)—t
o\

1=0

—_

AVw(t A, o) L = gt +w))dLG ) + My,

N | =

=
I
S— “T—=

s

Va(t+u, Tepu) WTepu 7 go(t 1), Mg # g1(t+u))dmipy
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Taking the expectation w.r.t. the measure P; -, we finally obtain
EiV(t+s,ms) =VI(t,m)+

C/ Pt,Tr(ﬂ-t—‘ru < go(t + u))du + C/ Pt,7r(7rt+u > gl(t + U))du
0 0

for all s € [0,1 —¢].

Setting m = g;(t), i = 0,1, and s = 1—t, we receive the required system
of nonlinear integral equations (i = 0, 1)

ey (-1 / Py (7 < 05t +w)) du = agi(t) Ab(1 = gi(1))
0

Step 10: uniqueness

The uniqueness of the solution in the class of functions we are dealing
with is pretty the same as in the work of Gapeev and Peskir, 2003. [
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6. Conclusion
e Problem:

Xy =pbt+B), p#0
HOZGZO H1:9:1
V(n) = (incg) Exler +al(d=0,0=1)+bl(d=1,0 =0)],

e The optimal decision rule:
T =mf{0 <t <1 ¢ (g0(t), 91(2))}

g 1 (accept Hy), if mr+ = g1(77)
o (accept Hy), if mr+ = go(77)
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The optimal stopping boundary The optimal stopping boundary
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Thank you for your attention!



Step 6: smooth fit principle

In this section we would like to convinced that 7 — V (¢, 7) belongs to
C' on the boundaries (go, g1).

Let us fix some point (¢,7) € Ry x (0,1) such that m = go(¢). Then
for all e > 0 with 7 < m 4+ ¢ < r we have
V(t,m+e)—V(t,) < G(t,m+¢)—G(t,m)

X

9 S

Thus, taking the limit as ¢ | 0 we get

otV oG
- < )
(t,m) < S 2(t)

The only thing to do is to set the reverse inequality. The idea is to invoke
subharmonic characterisation of the function V (¢, 7) and the scale and
measure functions for diffusion process 7.
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In doing so, let us introduce a stopping moment
Te=inf{s>0:ms ¢ (m—e,m+¢)}

Then
EixV(t,myr.) =Pir(miyr. =7+ )V(t,m+ )+
Pir(Tigr. =m—e)V(t,m—¢)

Note additionally that two following relations are valid
EtxV(t, miir) 2 EexV(E+ 7e, Toyr.) + BEon [G(E, Tegr.) — G(E+ Te, Tigr, )]

ct c(t+ 1)
>V(t,w)+Etm(1+t_ 1”:7),
15

where we have used the fact prooved that V (¢, 7) —G(t,7) < V(t',7) —
Gt',m) forall t >t/

V(t,m) =Pr(n. =7+¢e) - V(t,n) + Pr(mr. =7 —¢) - G(t, )
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Combining those results we may conclude that

V(t,m+¢)—V(t,m) S G(t,m) —G{t,m—¢) P(rr =m— 5)

€ - € P(7T7-€—7T+6)
1 c(t +7.)
€P7T(7T7-E:7r+€ 1+t 1+t+7

Well known fact: P(m,. = m+¢)) = (S(m)—S(m—¢e)/(S(m+¢e)—S(m—
g))and P(m,, =7 —¢)) = (S(mr+¢) — S(m)/(S(m+¢e) — S(m—¢g)),

S(z) = x for z € [0, 1] being the scale functionof the process ;.
Moreover one can get the following estimation

T+
E (] = / Greemye(m, y)mldy) < K - €2

T—E&

for some K large enough (not depending on ¢).
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We have used Green function

(m1 —a)(y —mo)/(m1 —mo) if m<y<u,
(m1 —y)(x —mo)/(m1 —mo) if z<y<m,

G7T077T1 (xa y) = {

for any [m, m1] C (0,1).

Whereas the measure function m(dy) is given by m(dy) = 2[uy(1 —
y)] " tdy for all y € (0,1).

Since functions S and G are differentiable in 7 = go(¢) forall 0 <7 < r

we have . )
otV oG S'(r) oG
> . = — .

ase )0

The proof for the boundary g1 is quite the same with trivial changing.
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