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1. Introduction

Sequential hypotheses testing

Given two hypotheses about some process 𝑋 to distinguish:

𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝐻0 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝐻1

𝑡

𝑋𝑡

0

𝑥

𝜏

𝑋𝜏
⇐ Some decision rule (𝜏, 𝑑)

∙ 𝜏 is an (F𝑋
𝑡 )𝑡>0 -adapted st. time, where F𝑋

𝑡 = 𝜎{𝑋𝑠, 𝑠 6 𝑡}
∙ 𝑑 is an F𝜏 -measurable random variable taking two values correspond-

ing to the hypothesis to accept
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Each procedure of sequential testing consists of the decision rule (𝜏, 𝑑).

∙ How to choose (𝜏, 𝑑)?

𝑅(𝜏, 𝑑) = E [𝑐𝜏 +𝑊 (𝑑, . . . )] → inf
(𝜏,𝑑)

,

where 𝑐 > 0 is some constant interpreted as a payment for the obser-

vations and 𝑊 (. . . ) is responsible for the penalties because of a wrong

terminal decision.

∙ How to solve?

𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

⇕
𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

⇕
𝐹𝑟𝑒𝑒 - 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑝𝑟𝑜𝑏𝑙𝑒𝑚
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2. Problem formulation for a Brownian bridge

Model

Given an observable process

𝑋𝑡 = 𝜇𝜃𝑡+𝐵0
𝑡 , 0 6 𝑡 6 1,

𝐵0
𝑡 being the unique strong solution to the following SDE

𝑑𝐵0
𝑡 =

−𝐵0
𝑡

1− 𝑡
𝑑𝑡+ 𝑑𝐵𝑡, 𝐵0

0 = 0, 0 6 𝑡 < 1

∙ All processes and random variables are considered on some probability-

statistical space (Ω;F ;P𝜋, 𝜋 ∈ [0, 1])

∙ 𝐵𝑡 is a standard Wiener process, 𝐵0
𝑡 is a standard Brownian bridge

process, 𝜇 ̸= 0 is some known constant, 𝜃 is a random variable s.t.

P𝜋(𝜃 = 1) = 𝜋 and P𝜋(𝜃 = 0) = 1− 𝜋

∙ 𝐵𝑡 (or 𝐵
0
𝑡 ) and 𝜃 are independent and 𝜃 cannot be observed directly

but through the process 𝑋𝑡
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Aim

We would like to test sequentially two simple hypotheses about the pres-

ence of a drift coefficient:

𝐻0 : 𝜃 = 0 and 𝐻1 : 𝜃 = 1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: 𝑋𝑡 = 𝐵0
𝑡

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: 𝑋𝑡 = 𝜇𝑡+𝐵0
𝑡
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Risk criterion

We will say that the decision rule is optimal if it minimizes the risk

𝑉 (𝜋) = inf
(𝜏,𝑑)

E𝜋 (𝑐𝜏 + 𝑎1(𝑑 = 0, 𝜃 = 1) + 𝑏1(𝑑 = 1, 𝜃 = 0)) ,

where E𝜋 denotes the expectation w.r.t. measure P𝜋, 𝑐, 𝑎, 𝑏 > 0.

Using standard technique (A.N. Shiryaev (1963)) one can show that the

initial problem can be reduced to the optimal stopping problem

𝑉 (𝜋) = inf
𝜏
E𝜋[𝑐𝜏 + 𝑎𝜋𝜏 ∧ 𝑏(1− 𝜋𝜏 )]

(︁
= inf

𝜏
E𝜋 [𝑐𝜏 +𝐺(𝜋𝜏 )]

)︁
𝑑* =

{︃
1, if 𝜋𝜏* > 𝑟

0, if 𝜋𝜏* < 𝑟

for the aposteriori probability process 𝜋𝑡 = P𝜋

(︀
𝜃 = 1|F𝑋

𝑡

)︀
, 0 6 𝑡 6 1,

with P𝜋 (𝜋0 = 𝜋) = 1 and 𝑟 = 𝑏/(𝑎+ 𝑏).

Remark: 𝐺(𝑟) = max
𝜋∈[0,1]

(𝑎𝜋 ∧ 𝑏(1− 𝜋))
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3. Results

Theorem

1. The optimal decision rule is given by the pair (𝜏*, 𝑑*) with

𝜏* = inf{0 6 𝑡 6 1: 𝜋𝑡 /∈ (𝑔0(𝑡), 𝑔1(𝑡))},

𝑑* =

{︃
1 (accept 𝐻1), if 𝜋𝜏* = 𝑔1(𝜏

*)

0 (accept 𝐻0), if 𝜋𝜏* = 𝑔0(𝜏
*)

where the boundaries (𝑔0, 𝑔1) can be characterized as a unique solution

to the system of non-linear integral equations (𝑖 = 0, 1)

𝑐
1∑︁

𝑗=0

(−1)𝑗+1

1−𝑡∫︁
0

P𝑡,𝑔𝑖(𝑡)

(︁
𝜋
𝑔𝑖(𝑡)
𝑡+𝑢 6 𝑔𝑗(𝑡+ 𝑢)

)︁
𝑑𝑢 = 𝑎𝑔𝑖(𝑡) ∧ 𝑏(1− 𝑔𝑖(𝑡))
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2. The explicit expression for these probabilities is given by

P𝑡,𝑔𝑖(𝑡)

(︁
𝜋
𝑔𝑖(𝑡)
𝑡+𝑢 6 𝑔𝑗(𝑡+ 𝑢)

)︁
=

𝑔𝑖(𝑡)Φ

(︂√
1− 𝑡

√
1− 𝑡− 𝑢

𝜇
√
𝑢

)︂
×

ln

(︂
1− 𝑔𝑖(𝑡)

𝑔𝑖(𝑡)

𝑔𝑗(𝑡+ 𝑢)

1− 𝑔𝑗(𝑡+ 𝑢)
− 𝜇

√
𝑢

2
√
1− 𝑡

√
1− 𝑡− 𝑢

)︂
+

(1− 𝑔𝑖(𝑡))Φ

(︂√
1− 𝑡

√
1− 𝑡− 𝑢

𝜇
√
𝑢

)︂
×

ln

(︂
1− 𝑔𝑖(𝑡)

𝑔𝑖(𝑡)

𝑔𝑗(𝑡+ 𝑢)

1− 𝑔𝑗(𝑡+ 𝑢)
+

𝜇
√
𝑢

2
√
1− 𝑡

√
1− 𝑡− 𝑢

)︂
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3. The optimal pair of boundaries (𝑔0, 𝑔1) has the following properties:

𝑔0 : [0, 1] → [0, 1] is decreasing and 𝑔0(1) = 0

𝑔1 : [0, 1] → [0, 1] is increasing and 𝑔1(1) = 1

Besides, the following inequalities are true

𝑚0

(︂
𝑡

1− 𝑡

)︂
6 𝑔0(𝑡) 6𝑀0

(︂
𝑡

1− 𝑡

)︂
< 𝑟

𝑟 < 𝑀1

(︂
𝑡

1− 𝑡

)︂
6 𝑔1(𝑡) 6 𝑚1

(︂
𝑡

1− 𝑡

)︂
,

Provided 𝑎 = 𝑏, we have ̃︁𝑀1(𝑡) = 1 − ̃︁𝑀0(𝑡) and ̃︀𝑚1(𝑡) = 1 − ̃︀𝑚0(𝑡)
and the asymptotic behaviour as 𝑡 ↑ 1 is

̃︀𝑚0(𝑡) =
𝑐

𝑎

√︀
1 + 8/𝜇2 − 1√︀
1 + 8/𝜇2 + 1

𝑒−1/(1−𝑡) + 𝑜(𝑒−1/(1−𝑡)),

̃︁𝑀0(𝑡) =
2𝑐

𝜇2𝑎
(1− 𝑡)2 + 𝑜((1− 𝑡)2).
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4. Some known results

1. The Wiener sequential testing problem with finite horizon
(Gapeev and Peskir, 2003)

∙ Model:

𝑋𝑡 = 𝜇𝜃𝑡+𝐵𝑡, 0 6 𝑡 6 1

– All processes and random variables are considered on some probability-

statistical space (Ω;F ;P𝜋, 𝜋 ∈ [0, 1])

– 𝐵𝑡 is a standard Wiener process, 𝜃 is a random variable such that

P𝜋(𝜃 = 1) = 𝜋 and P𝜋(𝜃 = 0) = 1 − 𝜋, 𝜇 ̸= 0 is some known

constant

– 𝐵𝑡 and 𝜃 are independent and cannot be observed directly, but through
the process 𝑋𝑡
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∙ Goal:

𝐻0 : 𝜃 = 0 𝐻1 : 𝜃 = 1

∙ Risk criterion:

𝑉 (𝜋) = inf
(𝜏,𝑑)

E𝜋 [𝑐𝜏 + 𝑎1(𝑑 = 0, 𝜃 = 1) + 𝑏1(𝑑 = 1, 𝜃 = 0)]

⇓

𝑉 (𝜋) = inf
𝜏
E𝜋 [𝑐𝜏 + 𝑎𝜋𝜏 ∧ 𝑏(1− 𝜋𝜏 )]

𝑑* =

{︃
1, if 𝜋𝜏* > 𝑟

0, if 𝜋𝜏* < 𝑟

for the aposteriori probability process 𝜋𝑡 = P𝜋

(︀
𝜃 = 1|F𝑋

𝑡

)︀
, 0 6 𝑡 6 1,

with P𝜋 (𝜋0 = 𝜋) = 1.
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∙ Solution:

The optimal decision rule is given by the pair (𝜏*, 𝑑*), where

𝜏* = inf{0 6 𝑡 6 1: 𝜋𝑡 /∈ (𝑔0(𝑡), 𝑔1(𝑡))},

𝑑* =

{︃
1 (accept 𝐻1), if 𝜋𝜏* = 𝑔1(𝜏

*)

0 (accept 𝐻0), if 𝜋𝜏* = 𝑔0(𝜏
*)

𝜋𝑡

𝑡0 1

1
𝑔1(𝑡)

𝑔0(𝑡)

𝑟

𝐷

𝜋

𝜏*
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2. Chernoff’s problem (Zhitlukhin and Muravlev, 2012)

∙ Model:

𝑋𝑡 = 𝜇𝑡+𝐵𝑡, 𝑡 > 0,

with 𝜇 ∼ 𝒩 (𝜇0, 𝜎
2
0) independent of 𝐵 = (𝐵𝑡)𝑡>0 being the standard

Wiener process.

∙ Goal:

𝐻0 : 𝜇 > 0 𝐻1 : 𝜇 6 0

∙ Risk criterion:

𝑅(𝜏, 𝑑) = E [𝑐𝜏 + 𝑘|𝜇|1(𝑑 ̸= sgn(𝜇))] → inf
(𝜏,𝑑)

,

where 𝑐, 𝑘 > 0 are some fixed constants, 𝑑 is a r.v. taking values {−1, 1}
only, and sgn(0) = −1.
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∙ Solution:

𝜏* =
𝜏*𝑊

𝜎2
0(1− 𝜏*𝑊 )

, 𝑑* = sgn

(︂
𝑋𝜏* +

𝜇0

𝜎2
0

)︂

𝜏*𝑊 (𝜇0, 𝜎0) = inf

{︂
0 6 𝑡 6 1:

⃒⃒⃒⃒
𝑊𝑡 +

𝜇0

𝜎0

⃒⃒⃒⃒
> 𝑎𝜎0(𝑡)

}︂

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.6

−
0
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0
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0
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0
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t

a
*
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)
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5. Scheme of the Proof

Step 1: dynamic of the aposteriori probability process

The general Bayes formula says that the aposteriori probability process

can be expressed through the density process 𝜙𝑡 =
𝑑𝑃1
𝑑𝑃0

(︀
F𝑋

𝑡

)︀
as follows:

𝜋𝜋
𝑡 =

𝜋
1−𝜋𝜙𝑡

1 + 𝜋
1−𝜋𝜙𝑡

.

Here P0(·) = P𝜋( · | 𝜃 = 0) and P1(·) = P𝜋( · | 𝜃 = 1).

Due to the local absolute continuity (Liptser&Shiryaev) of measures 𝑃0

and 𝑃1, we see that 𝜙𝑡 admits the representation

𝜙𝑡 = exp

(︂∫︁ 𝑡

0

𝜇

1− 𝑠
𝑑𝑋𝑠 +

𝜇

2

∫︁ 𝑡

0

2𝑋𝑠 − 𝜇

(1− 𝑠)2
𝑑𝑠

)︂
=⇒ 𝑑𝜙𝑡 = 𝜙𝑡

(︂
𝜇

1− 𝑡
𝑑𝑋𝑡 +

𝜇𝑋𝑡

(1− 𝑡)2
𝑑𝑡

)︂
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Hence, it is easy to check that

𝑑𝜋𝑡 = 𝜋𝑡(1−𝜋𝑡)
𝜇

1− 𝑡
𝑑𝑋𝑡+

(︂
𝜋𝑡(1− 𝜋𝑡)

𝜇𝑋𝑡

(1− 𝑡)2
− 𝜋2

𝑡 (1− 𝜋𝑡)
𝜇2

(1− 𝑡)2

)︂
𝑑𝑡

∙ Difficulty: 𝑋𝑡 is not a diffusion-type process but an Itô one

𝑑𝑋𝑡 =
𝜇𝜃 −𝑋𝑡

1− 𝑡
𝑑𝑡+ 𝑑𝐵𝑡

∙ Solution: the usage of an innovation process 𝐵̄𝑡, i.e.

𝐵̄𝑡 = 𝑋𝑡 −
∫︁ 𝑡

0

𝜇𝜋𝑠 −𝑋𝑠

1− 𝑠
𝑑𝑠

where (𝐵̄𝑡,F𝑋
𝑡 ) appears to be a Bm and F𝑋

𝑡 = F 𝐵̄
𝑡 for all 𝑡 ∈ [0, 1].

=⇒ 𝑑𝑋𝑡 =
𝜇𝜋𝑡 −𝑋𝑡

1− 𝑡
𝑑𝑡+ 𝑑𝐵̄𝑡, 𝑑𝜋𝑡 =

𝜇

1− 𝑡
𝜋𝑡(1− 𝜋𝑡)𝑑𝐵̄𝑡, 𝜋0 = 𝜋.
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∙ The optimal stopping problem to solve

𝑉 (𝑡, 𝜋) = inf
06𝜏61−𝑡

E𝑡,𝜋𝐺(𝑡+ 𝜏 , 𝜋𝑡+𝜏 ),

with the function 𝐺(𝑡, 𝜋) = 𝑐𝑡 + 𝑎𝜋 ∧ 𝑏(1 − 𝜋) [= 𝑐𝑡+𝐺(𝜋)] for all

(𝑡, 𝜋) ∈ [0, 1] × [0, 1]. Under measure P𝑡,𝜋(𝜋𝑡 = 𝜋) = 1 the process

(𝜋𝑡+𝑠)06𝑠61−𝑡 is the solution to the SDE

𝑑𝜋𝑡+𝑠 =
𝜇

1− 𝑡− 𝑠
𝜋𝑡+𝑠(1− 𝜋𝑡+𝑠)𝑑𝐵̄𝑡+𝑠, 𝜋𝑡 = 𝜋,

∙ Remark: since the function 𝐺 is bounded and continuous on [0, 1]×
[0, 1], it follows from the general theory that the optimal stopping time

in the considered problem exists.
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Step 2: change of time and change of space

Method: let us assume that some process 𝑌 satisfies the SDE

𝑑𝑌𝑡 = 𝑏(𝑡, 𝑌𝑡)𝑑𝑡+ 𝜎(𝑡, 𝑌𝑡)𝑑𝐵𝑡, 𝑌0 = 𝑦0.

∙ Assumptions: 𝑇 (𝑡) ∈ 𝐶1, 𝑇 (𝑡) ↗, Ψ(𝑡, 𝑦) ∈ 𝐶1,2 and 𝜕Ψ(𝑡,𝑦)
𝜕𝑦 > 0

∙ Change of time and change of space:

𝜂 = Ψ(𝑡, 𝑦)

𝜈 = 𝑇 (𝑡)

∙ Notations: 𝑎(𝑡, 𝑦) = 𝜎2(𝑡, 𝑦),

𝐵(𝜈, 𝜂) =

1
2𝑎(𝑡, 𝑦)

𝜕2Ψ(𝑡,𝑦)
𝜕𝑦2

+ 𝑏(𝑡, 𝑦)𝜕Ψ(𝑡,𝑦)
𝜕𝑦 + 𝜕Ψ(𝑡,𝑦)

𝜕𝑡

𝜕𝑇 (𝑡)
𝜕𝑡

,

𝐴(𝜈, 𝜂) =
𝑎(𝑡, 𝑦)

(︁
𝜕Ψ(𝑡,𝑦)

𝜕𝑦

)︁2

𝜕𝑇 (𝑡)
𝜕𝑡
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∙ Trasformation: ̂︀𝑌𝜈 = Ψ( ̂︀𝑇 (𝜈), 𝑌̂︀𝑇 (𝜈)
),̂︀𝑇 (𝜈) = inf{𝑡 : 𝑇 (𝑡) = 𝜈}

So, 𝑌 with characteristics (𝑏, 𝜎) ̂︀𝑌 with characteristics (𝐵,Σ) s.t.

𝑑̂︀𝑌𝜈 = 𝐵(𝜈, ̂︀𝑌𝜈)𝑑𝜈 +Σ(𝜈, ̂︀𝑌𝜈)𝑑 ̂︀𝐵𝜈 ,

where Σ2 = 𝐴 and ̂︀𝐵 = ( ̂︀𝐵𝜈)𝜈>0 is a Wiener process.

Application

𝜂 = 𝑦, 𝜈 =
𝑡

1− 𝑡
, (𝑡, 𝑦) ∈ [0, 1)× [0, 1]

𝑦 = 𝜂, 𝑡 =
𝜈

1 + 𝜈
, (𝜈, 𝜂) ∈ R+ × [0, 1]

̂︀𝜋𝜈 = 𝜋𝑡(𝜈) = 𝜋 𝜈
1+𝜈

, 𝜈 ∈ R+,

𝑑̂︀𝜋𝜈 = 𝜇̂︀𝜋𝜈(1− ̂︀𝜋𝜈)𝑑̂︀𝐵𝜈 , ̂︀𝜋0 = ̂︀𝜋, 𝜈 ∈ R+

19/40



Transformed optimal stopping problem

𝑉 (𝜈, ̂︀𝜋) = inf
𝜎>0

E𝜈,̂︀𝜋 ̂︀𝐺(𝜈 + 𝜎, ̂︀𝜋𝜈+𝜎),

̂︀𝐺(𝜈, ̂︀𝜋) = 𝑐𝜈

1 + 𝜈
+ 𝑎̂︀𝜋 ∧ 𝑏(1− ̂︀𝜋)(︂= 𝑐𝜈

1 + 𝜈
+𝐺(̂︀𝜋))︂ .

where P𝜈,̂︀𝜋(̂︀𝜋𝜈 = ̂︀𝜋) = 1 and infimum is taken over all stopping times 𝜎
adapted to the natural filtration generated by the process (̂︀𝜋𝜈+𝜁)𝜁>0.

∙ Lagrange-Mayer form:

𝑉 (𝜈, ̂︀𝜋) = inf
𝜎>0

E𝜈,̂︀𝜋
(︂
𝑐

∫︁ 𝜎

0

𝑑𝜁

(1 + 𝜈 + 𝜁)2
+ ̂︀𝐺(𝜈, ̂︀𝜋𝜈+𝜎)

)︂
for (𝜈, ̂︀𝜋) ∈ R+ × [0, 1]

∙ Note: one-to-one correspondence of Kolmogorov’s time-space change

guarantees the coincidence of the filtrations F 𝜋
𝑡 ≡ F ̂︀𝜋

𝜈(𝑡)
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Step 3: structure of the optimal stopping time

One can find that:

∙ it is never optimal to stop on the line R+×{𝑟} with 𝑟 = argmax𝐺(𝜋)

∙ the map 𝜋 → 𝑉 (𝑡, 𝜋) is concave for every 𝑡 > 0

∙ there exists boundaries 𝑔0(𝑡) < 𝑟 < 𝑔1(𝑡) for 𝑡 ∈ R+ s.t.

◇ the continuation set is given by

𝐶 = {(𝑡, 𝜋) ∈ R+ × [0, 1] : 𝜋 ∈ (𝑔0(𝑡), 𝑔1(𝑡))}

◇ the stopping set is the closure of the set

𝐷 = {(𝑡, 𝜋) ∈ R+ × [0, 1] : 𝜋 ∈ [0, 𝑔0(𝑡)) ∪ (𝑔1(𝑡), 1]}

∙ the continuation set 𝐶 is open and the stopping set 𝐷 is closed

∙ 𝑔0(1) = 0 and 𝑔1(1) = 1

Remark: 𝑉 (𝑡, 𝜋) has to be lsc (in fact, 𝑉 is continuous!), whereas𝐺(𝑡, 𝜋)
has to be usc
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Step 4: monotonicity of the boundaries

It follows from the fact that for arbirary numbers 𝑡2 > 𝑡1 on R+

𝑉 (𝑡2, 𝜋)−𝐺(𝑡2, 𝜋) 6 𝑉 (𝑡1, 𝜋)−𝐺(𝑡1, 𝜋)

𝑡

𝜋

0

𝑟
(𝑡1, 𝜋)

(𝑡2, 𝜋)

𝑡1 𝑡2

𝐷
𝐶

𝑡

𝜋

0

𝑟
(𝑡1, 𝜋) (𝑡2, 𝜋)

𝑡1 𝑡2

𝐷

𝐷

𝐶
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Denote through 𝜎(𝑡1, 𝜋) and 𝜎(𝑡2, 𝜋) the optimal stopping moments

in the correspondent problems. Then we have the following chain of

inequalities:

𝑉 (𝑡2, 𝜋)−𝐺(𝑡2, 𝜋) = E

⎛⎜⎝𝑐

𝜎(𝑡2,𝜋)∫︁
0

𝑑𝑠

(1 + 𝑡2 + 𝑠)2
+𝐺(𝜋𝑡2+𝜎(𝑡2,𝜋))−𝐺(𝜋)

⎞⎟⎠
6 E

⎛⎜⎝𝑐

𝜎(𝑡1,𝜋)∫︁
0

𝑑𝑠

(1 + 𝑡2 + 𝑠)2
+𝐺(𝜋𝑡2+𝜎(𝑡1,𝜋))−𝐺(𝜋)

⎞⎟⎠ 6
E

⎛⎜⎝𝑐

𝜎(𝑡1,𝜋)∫︁
0

𝑑𝑠

(1 + 𝑡1 + 𝑠)2
+𝐺(𝜋𝑡1+𝜎(𝑡1,𝜋))−𝐺(𝜋)

⎞⎟⎠ = 𝑉 (𝑡1, 𝜋)−𝐺(𝑡1, 𝜋)

Hence, if the point (𝑡′, 𝜋) ∈ 𝐶 for some 𝜋 then it is true that

𝑉 (𝑡, 𝜋)−𝐺(𝑡, 𝜋) 6 𝑉 (𝑡′, 𝜋)−𝐺(𝑡′, 𝜋) < 0 for all 𝑡 > 𝑡′ ⇒ (𝑡, 𝜋) ∈ 𝐶.
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Step 5: continuity of 𝑉 (𝑡, 𝜋)

For the continuity of 𝑉 (𝑡, 𝜋) as a mapping (𝑡, 𝜋) → 𝑉 (𝑡, 𝜋) on R+×[0, 1]
to be proved it is enough to verify

𝜋 → 𝑉 (𝑡0, 𝜋) is continuos in 𝜋0

𝑡 → 𝑉 (𝑡, 𝜋) is continuous in 𝑡0 uniformly over 𝜋 ∈ [𝜋0 − 𝛿, 𝜋0 + 𝛿]

𝜋 → 𝑉 (𝑡, 𝜋) is concave  the first assertion holds
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For the second one we have the following

0 6 𝑉 (𝑡2, 𝜋)− 𝑉 (𝑡1, 𝜋) 6

E𝜋

⎡⎢⎣ 𝜎(𝑡1,𝜋)∫︁
0

𝑑𝑠

(1 + 𝑡2 + 𝑠)2
+𝐺(𝑡2, 𝜋𝑡2+𝜎(𝑡1,𝜋))

⎤⎥⎦−

E𝜋

⎡⎢⎣ 𝜎(𝑡1,𝜋)∫︁
0

𝑑𝑠

(1 + 𝑡1 + 𝑠)2
+𝐺(𝑡1, 𝜋𝑡1+𝜎(𝑡1,𝜋))

⎤⎥⎦ =

E𝜋

𝜎(𝑡1,𝜋)∫︁
0

(︂
1

(1 + 𝑡2 + 𝑠)2
− 1

(1 + 𝑡1 + 𝑠)2

)︂
𝑑𝑠+

(︂
𝑐𝑡2

1 + 𝑡2
− 𝑐𝑡1

1 + 𝑡1

)︂
→ 0

as 𝑡2 ↓ 𝑡1.
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Step 6: smooth fit principle

𝑆𝑚𝑜𝑜𝑡ℎ𝑓𝑖𝑡

⇕

𝜋 → 𝑉 (𝑡, 𝜋) belongs to 𝐶1 on the boundaries (𝑔0, 𝑔1)

∙ For any point (𝑡, 𝜋) ∈ R+ × (0, 1) such that 𝜋 = 𝑔0(𝑡), and for all

𝜀 > 0 with 𝜋 < 𝜋 + 𝜀 < 𝑟 we have

𝑉 (𝑡, 𝜋 + 𝜀)− 𝑉 (𝑡, 𝜋)

𝜀
6

𝐺(𝑡, 𝜋 + 𝜀)−𝐺(𝑡, 𝜋)

𝜀

⇓ 𝜀 ↓ 0

𝜕+𝑉

𝜕𝜋
(𝑡, 𝜋) 6

𝜕𝐺

𝜕𝜋
(𝑡, 𝜋)

∙ The reverse inequality holds (but the proof is much trickier)

𝜕+𝑉

𝜕𝜋
(𝑡, 𝜋) >

𝜕𝐺

𝜕𝜋
(𝑡, 𝜋)
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Step 7: restraints on the optimal boundaries

Let us introduce two time-homogeneous optimal stopping problems

𝐻(𝜈, ̂︀𝜋; 𝑐) = inf
𝜎>0

Ê︀𝜋
(︂
𝑐

∫︁ 𝜎

0
1 𝑑𝜁 +𝐺(𝜈, ̂︀𝜋𝜎))︂

𝐾(𝜈, ̂︀𝜋; 𝑐) = inf
𝜎>0

Ê︀𝜋
(︂
𝑐

∫︁ 𝜎

0
𝑒−𝜁𝑑𝜁 + 𝑒−𝜎𝐺(𝜈, ̂︀𝜋𝜎))︂ .

One can easily check validity of the following relations

𝐾
(︁
Z𝜈 , ̂︀𝜋; 𝑐 · 𝑒−(1+𝜈)

)︁
6 𝑉 (𝜈, ̂︀𝜋) 6 𝐻

(︀
Z𝜈 , ̂︀𝜋; 𝑐 · (1 + 𝜈)−2

)︀
General theory says that 𝐶 = {(𝜈, ̂︀𝜋) : 𝑉 (𝜈, ̂︀𝜋) < 𝐺(𝜈, ̂︀𝜋)} and

𝐷 = {(𝜈, ̂︀𝜋) : 𝑉 (𝜈, ̂︀𝜋) = 𝐺(𝜈, ̂︀𝜋)}. Hence, we conclude that
𝑚𝐾

0 (𝜈) 6 ̂︀𝑔0(𝜈) 6𝑀𝐻
0 (𝜈),

𝑀𝐻
1 (𝜈) 6 ̂︀𝑔1(𝜈) 6 𝑚𝐾

1 (𝜈),

where 𝜈(𝑡) = 𝑡(1− 𝑡)−1 for all 𝑡 ∈ [0, 1).
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Step 8: continuity of the boundaries (𝑔0, 𝑔1)

∙ Continuity of 𝑔𝑖(𝑡) from the left

Let us fix some 𝑡 and concider a sequence of 𝑡𝑛 ↑ 𝑡 as 𝑛 → ∞. The

limit lim𝑛→∞ 𝑔𝑖(𝑡𝑛) exists (we invoke the monotonicity argument here)

and equals 𝑔𝑖(𝑡−). Since the points (𝑡𝑛, 𝑔𝑖(𝑡𝑛)) ∈ 𝐷̄ for all 𝑛 > 1 and

𝐷̄ is a close set we have that (𝑡, 𝑔𝑖(𝑡−)) ∈ 𝐷̄, as well. However, using

the structer of the set 𝐷 it is easy to see that 𝑔0(𝑡) > 𝑔0(𝑡−) and

𝑔1(𝑡) 6 𝑔1(𝑡−). The reverse inequalities are obvious due to increasing

and decreasing of the boundaries 𝑔𝑖(𝑡). Thus, we have

𝑔𝑖(𝑡−) = 𝑔𝑖(𝑡) for all 𝑡 > 0

Remainder:

𝐷 = {(𝑡, 𝜋) : 𝜋 ∈ [0, 𝑔0(𝑡)) ∪ (𝑔1(𝑡), 1]}
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∙ Continuity from the right

𝑡

𝜋

0

(𝑡′, 𝑔0(𝑡
′))

(𝑡*, 𝑔0(𝑡*))

𝑡* 𝑡′

(𝑡′, 𝜋′)

𝑅 ⊂ 𝐶

(𝑡*, 𝜋
′)

𝑔0(𝑡*+)

𝑉 (𝑡, 𝜋)|𝜋=𝑔0(𝑡)+
=

𝑡

1 + 𝑡
+𝑎𝑔0(𝑡), 𝑉 (𝑡, 𝜋)|𝜋=𝑔1(𝑡)− =

𝑡

1 + 𝑡
+𝑏(1−𝑔1(𝑡))

𝜕𝑉

𝜕𝜋

⃒⃒⃒⃒
𝜋=𝑔0(𝑡)+

= 𝑎,
𝜕𝑉

𝜕𝜋

⃒⃒⃒⃒
𝜋=𝑔1(𝑡)−

= −𝑏

These allow us to apply the Newton-Leibniz formula for all (𝑡, 𝜋) ∈ 𝑅

𝑉 (𝑡, 𝜋)−𝐺(𝑡, 𝜋) =

∫︁ 𝜋

𝑔0(𝑡)

∫︁ 𝑢

𝑔0(𝑡)

(︂
𝜕2𝑉

𝜕𝜋2
− 𝜕2𝐺

𝜕𝜋2

)︂
(𝑡, 𝑣)𝑑𝑣𝑑𝑢

29/40



It can be shown that

∙ 𝜕𝑉
𝜕𝑡 (𝑡, 𝜋) > 0 for all (𝑡, 𝜋) ∈ 𝐶

∙ the function 𝑉 (𝑡, 𝜋) solves the equation

𝐿𝜋𝑉 (𝑡, 𝜋) = 0 for all (𝑡, 𝜋) ∈ 𝐶

⇓

For all 𝑡* < 𝑡 6 𝑡′, 𝑔0(𝑡
′) < 𝜋 6 𝜋′ with 𝛿 being small enough, 𝑠 > 0

𝜕2𝑉

𝜕𝜋2
(𝑡, 𝜋) = − 2

𝜇2

1

𝜋2(1− 𝜋)2
𝜕𝑉

𝜕𝑡
(𝑡, 𝜋) 6 −2𝛿

𝜇2

𝑐

(1 + 𝑡+ 𝑠)2

𝑉 (𝑡′, 𝜋′)−𝐺(𝑡′, 𝜋′) 6 −2𝛿

𝜇2

𝑐

(1 + 𝑡′ + 𝑠)2
(𝜋′ − 𝑔0(𝑡

′))2

2

⇓ 𝑡′ ↓ 𝑡*

𝑉 (𝑡*, 𝜋
′)−𝐺(𝑡*, 𝜋

′) 6 −2𝛿

𝜇2

𝑐

(1 + 𝑡* + 𝑠)2
(𝜋′ − 𝑔0(𝑡*+))2

2
< 0
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Step 9: free-boundary problem

Summarizing the facts proved, we have:

𝜏* = inf{0 6 𝑠 6 1− 𝑡 : 𝜋𝑡+𝑠 /∈ (𝑔0(𝑡+ 𝑠), 𝑔1(𝑡+ 𝑠))}

(the infimum of an empty set is supposed to be equal to 1 − 𝑡), where
the pair (𝑔0, 𝑔1) has the following properties:

𝑔0 : [0, 1] → [0, 1] is continuous and decreasing

𝑔1 : [0, 1] → [0, 1] is continuous and increasing

𝑚0

(︂
𝑡

1− 𝑡

)︂
6 𝑔0(𝑡) 6𝑀0

(︂
𝑡

1− 𝑡

)︂
< 𝑟 for all 0 6 𝑡 < 1

𝑟 < 𝑀1

(︂
𝑡

1− 𝑡

)︂
6 𝑔1(𝑡) 6 𝑚1

(︂
𝑡

1− 𝑡

)︂
for all 0 6 𝑡 < 1

𝑔0(1) = 0, 𝑔1(1) = 1

𝑚𝑖(𝜈) and 𝑀𝑖(𝜈), 𝑖 = 0, 1, being the solutions of two different systems

of transcendental equations.
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The infinitesimal operator 𝐿 of the process (𝑡, 𝜋𝑡) is defined as:

(𝐿𝑓)(𝑡, 𝜋) =

(︂
𝜕𝑓

𝜕𝑡
+

𝜇2

2

𝜋2(1− 𝜋)2

(1− 𝑡)2
𝜕2𝑓

𝜕𝜋2

)︂
(𝑡, 𝜋), 𝑓 ∈ 𝐶1,2([0, 1)×[0, 1]

∙ The free-boundary problem:

(𝐿𝑉 ) (𝑡, 𝜋) = 0, for (𝑡, 𝜋) ∈ 𝐶

𝑉 (𝑡, 𝜋)|𝜋=𝑔0(𝑡)+ = 𝑐𝑡+ 𝑎𝑔0(𝑡), 𝑉 (𝑡, 𝜋)|𝜋=𝑔1(𝑡)− = 𝑐𝑡+ 𝑏(1− 𝑔1(𝑡))

𝜕𝑉

𝜕𝜋
(𝑡, 𝜋)|𝜋=𝑔0(𝑡)+ = 𝑎,

𝜕𝑉

𝜕𝜋
(𝑡, 𝜋)|𝜋=𝑔1(𝑡)− = −𝑏

𝑉 (𝑡, 𝜋) < 𝐺(𝑡, 𝜋) for (𝑡, 𝜋) ∈ 𝐶

𝑉 (𝑡, 𝜋) = 𝐺(𝑡, 𝜋) for (𝑡, 𝜋) ∈ 𝐷,

with 𝐺(𝑡, 𝜋) = 𝑐𝑡+ 𝑎𝜋 ∧ 𝑏(1− 𝜋) and the sets 𝐶 and 𝐷 given by

𝐶 = inf{(𝑡, 𝜋) ∈ [0, 1)× [0, 1] : 𝜋 ∈ (𝑔0(𝑡), 𝑔1(𝑡))},
𝐷 = inf{(𝑡, 𝜋) ∈ [0, 1)× [0, 1] : 𝜋 ∈ [0, 𝑔0(𝑡)) ∪ (𝑔1(𝑡), 1]},
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∙ By Peskir’s change-of-variable formula with local time on curves:

𝑉 (𝑡+ 𝑠, 𝜋𝑡+𝑠) = 𝑉 (𝑡, 𝜋𝑡)+
𝑠∫︁

0

(𝐿𝑉 ) (𝑡+ 𝑢, 𝜋𝑡+𝑢)1(𝜋𝑡+𝑢 ̸= 𝑔0(𝑡+ 𝑢), 𝜋𝑡+𝑢 ̸= 𝑔1(𝑡+ 𝑢))𝑑𝑢+

1∑︁
𝑖=0

1

2

𝑠∫︁
0

(𝑉𝑡(𝑡+ 𝑢, 𝜋𝑡+𝑢+) + 𝑉𝑡(𝑡+ 𝑢, 𝜋𝑡+𝑢−))1(𝜋𝑡+𝑢 = 𝑔𝑖(𝑡+ 𝑢))𝑑𝑢+

1∑︁
𝑖=0

1

2

𝑠∫︁
0

(𝑉𝜋(𝑡+ 𝑢, 𝜋𝑡+𝑢+) + 𝑉𝜋(𝑡+ 𝑢, 𝜋𝑡+𝑢−))1(𝜋𝑡+𝑢 = 𝑔𝑖(𝑡+ 𝑢))𝑑𝜋𝑡+𝑢+

1∑︁
𝑖=0

1

2

𝑠∫︁
0

Δ𝑉𝜋(𝑡+ 𝑢, 𝜋𝑡+𝑢)1(𝜋𝑡+𝑢 = 𝑔𝑖(𝑡+ 𝑢))𝑑𝐿𝑔𝑖(·)
𝑢 +𝑀𝑠,

𝑀𝑠 =

∫︁ 𝑠

0
𝑉𝜋(𝑡+𝑢, 𝜋𝑡+𝑢)1(𝜋𝑡+𝑢 ̸= 𝑔0(𝑡+𝑢), 𝜋𝑡+𝑢 ̸= 𝑔1(𝑡+𝑢))𝑑𝜋𝑡+𝑢

33/40



Taking the expectation w.r.t. the measure P𝑡,𝜋, we finally obtain

E𝑡,𝜋𝑉 (𝑡+ 𝑠, 𝜋𝑡+𝑠) = 𝑉 (𝑡, 𝜋)+

𝑐

∫︁ 𝑠

0
P𝑡,𝜋(𝜋𝑡+𝑢 < 𝑔0(𝑡+ 𝑢))𝑑𝑢+ 𝑐

∫︁ 𝑠

0
P𝑡,𝜋(𝜋𝑡+𝑢 > 𝑔1(𝑡+ 𝑢))𝑑𝑢

for all 𝑠 ∈ [0, 1− 𝑡].

Setting 𝜋 = 𝑔𝑖(𝑡), 𝑖 = 0, 1, and 𝑠 = 1−𝑡, we receive the required system
of nonlinear integral equations (𝑖 = 0, 1)

𝑐

1∑︁
𝑗=0

(−1)𝑗+1

1−𝑡∫︁
0

P𝑡,𝑔𝑖(𝑡)

(︁
𝜋
𝑔𝑖(𝑡)
𝑡+𝑢 6 𝑔𝑗(𝑡+ 𝑢)

)︁
𝑑𝑢 = 𝑎𝑔𝑖(𝑡) ∧ 𝑏(1− 𝑔𝑖(𝑡))

Step 10: uniqueness

The uniqueness of the solution in the class of functions we are dealing

with is pretty the same as in the work of Gapeev and Peskir, 2003. �
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6. Conclusion
∙ Problem:

𝑋𝑡 = 𝜇𝜃𝑡+𝐵0
𝑡 , 𝜇 ̸= 0

𝐻0 : 𝜃 = 0 𝐻1 : 𝜃 = 1

𝑉 (𝜋) = inf
(𝜏,𝑑)

E𝜋 [𝑐𝜏 + 𝑎1(𝑑 = 0, 𝜃 = 1) + 𝑏1(𝑑 = 1, 𝜃 = 0)] ,

∙ The optimal decision rule:

𝜏* = inf{0 6 𝑡 6 1: 𝜋𝑡 /∈ (𝑔0(𝑡), 𝑔1(𝑡))}

𝑑* =

{︃
1 (accept 𝐻1), if 𝜋𝜏* = 𝑔1(𝜏

*)

0 (accept 𝐻0), if 𝜋𝜏* = 𝑔0(𝜏
*)
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Thank you for your attention!



Step 6: smooth fit principle

In this section we would like to convinced that 𝜋 → 𝑉 (𝑡, 𝜋) belongs to
𝐶1 on the boundaries (𝑔0, 𝑔1).

Let us fix some point (𝑡, 𝜋) ∈ R+ × (0, 1) such that 𝜋 = 𝑔0(𝑡). Then

for all 𝜀 > 0 with 𝜋 < 𝜋 + 𝜀 < 𝑟 we have

𝑉 (𝑡, 𝜋 + 𝜀)− 𝑉 (𝑡, 𝜋)

𝜀
6

𝐺(𝑡, 𝜋 + 𝜀)−𝐺(𝑡, 𝜋)

𝜀
.

Thus, taking the limit as 𝜀 ↓ 0 we get

𝜕+𝑉

𝜕𝜋
(𝑡, 𝜋) 6

𝜕𝐺

𝜕𝜋
(𝑡, 𝜋).

The only thing to do is to set the reverse inequality. The idea is to invoke

subharmonic characterisation of the function 𝑉 (𝑡, 𝜋) and the scale and

measure functions for diffusion process 𝜋𝑡.
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In doing so, let us introduce a stopping moment

𝜏𝜀 = inf{𝑠 > 0: 𝜋𝑠 /∈ (𝜋 − 𝜀, 𝜋 + 𝜀)}

Then
E𝑡,𝜋𝑉 (𝑡, 𝜋𝑡+𝜏𝜀) =P𝑡,𝜋(𝜋𝑡+𝜏𝜀 = 𝜋 + 𝜀)𝑉 (𝑡, 𝜋 + 𝜀)+

P𝑡,𝜋(𝜋𝑡+𝜏𝜀 = 𝜋 − 𝜀)𝑉 (𝑡, 𝜋 − 𝜀)

Note additionally that two following relations are valid

E𝑡,𝜋𝑉 (𝑡, 𝜋𝑡+𝜏𝜀) > E𝑡,𝜋𝑉 (𝑡+ 𝜏𝜀, 𝜋𝑡+𝜏𝜀) + E𝑡,𝜋 [𝐺(𝑡, 𝜋𝑡+𝜏𝜀)−𝐺(𝑡+ 𝜏𝜀, 𝜋𝑡+𝜏𝜀)]

> 𝑉 (𝑡, 𝜋) + E𝑡,𝜋

(︂
𝑐𝑡

1 + 𝑡
− 𝑐(𝑡+ 𝜏𝜀)

1 + 𝑡+ 𝜏𝜀

)︂
,

where we have used the fact prooved that 𝑉 (𝑡, 𝜋)−𝐺(𝑡, 𝜋) 6 𝑉 (𝑡′, 𝜋)−
𝐺(𝑡′, 𝜋) for all 𝑡 > 𝑡′

𝑉 (𝑡, 𝜋) = P𝜋(𝜋𝜏𝜀 = 𝜋 + 𝜀) · 𝑉 (𝑡, 𝜋) + P𝜋(𝜋𝜏𝜀 = 𝜋 − 𝜀) ·𝐺(𝑡, 𝜋)
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Combining those results we may conclude that

𝑉 (𝑡, 𝜋 + 𝜀)− 𝑉 (𝑡, 𝜋)

𝜀
>

𝐺(𝑡, 𝜋)−𝐺(𝑡, 𝜋 − 𝜀)

𝜀
· P(𝜋𝜏𝜀 = 𝜋 − 𝜀)

P(𝜋𝜏𝜀 = 𝜋 + 𝜀)
+

1

𝜀P𝜋(𝜋𝜏𝜀 = 𝜋 + 𝜀)
· E𝑡,𝜋

(︂
𝑐𝑡

1 + 𝑡
− 𝑐(𝑡+ 𝜏𝜀)

1 + 𝑡+ 𝜏𝜀

)︂

Well known fact: P(𝜋𝜏𝜀 = 𝜋+𝜀)) = (𝑆(𝜋)−𝑆(𝜋−𝜀)/(𝑆(𝜋+𝜀)−𝑆(𝜋−
𝜀)) and P(𝜋𝜏𝜀 = 𝜋 − 𝜀)) = (𝑆(𝜋 + 𝜀) − 𝑆(𝜋)/(𝑆(𝜋 + 𝜀) − 𝑆(𝜋 − 𝜀)),
𝑆(𝑥) = 𝑥 for 𝑥 ∈ [0, 1] being the scale functionof the process 𝜋𝑡.

Moreover one can get the following estimation

E𝜋 [𝜏𝜀] =

𝜋+𝜀∫︁
𝜋−𝜀

𝐺𝜋−𝜀,𝜋+𝜀(𝜋, 𝑦)𝑚(𝑑𝑦) 6 𝐾 · 𝜀2

for some 𝐾 large enough (not depending on 𝜀).
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We have used Green function

𝐺𝜋0,𝜋1(𝑥, 𝑦) =

{︃
(𝜋1 − 𝑥)(𝑦 − 𝜋0)/(𝜋1 − 𝜋0) if 𝜋0 6 𝑦 6 𝑥,

(𝜋1 − 𝑦)(𝑥− 𝜋0)/(𝜋1 − 𝜋0) if 𝑥 6 𝑦 6 𝜋1,

for any [𝜋0, 𝜋1] ⊂ (0, 1).

Whereas the measure function 𝑚(𝑑𝑦) is given by 𝑚(𝑑𝑦) = 2[𝜇𝑦(1 −
𝑦)]−1𝑑𝑦 for all 𝑦 ∈ (0, 1).

Since functions 𝑆 and 𝐺 are differentiable in 𝜋 = 𝑔0(𝑡) for all 0 6 𝜋 < 𝑟
we have

𝜕+𝑉

𝜕𝜋
(𝑡, 𝜋) >

𝜕𝐺

𝜕𝜋
(𝑡, 𝜋) · 𝑆

′
(𝜋)

𝑆′(𝜋)
=

𝜕𝐺

𝜕𝜋
(𝑡, 𝜋).

as 𝜀 ↓ 0

The proof for the boundary 𝑔1 is quite the same with trivial changing.
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