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Consumption Habit Formation

I The standard Merton optimal consumption problem:

u(x) = sup
(H,c)∈Ax

E
[∫ T

0

U(t, ct)dt

]
,

where Ax is the admissible set of portfolio-consumption strategies (H, c)
with the initial wealth x > 0.

I However, some empirical studies argued that
I the von Neumann-Morgenstern utilities can not reconcile the equity

premium puzzles.

I the consumer’s satisfaction level and risk tolerance sometimes rely more on
recent changes.

I the smooth consumption is more beneficial than the marked increase, such
as the household consumption and expenditures with commitment.

I The utility function should not merely be defined on the consumption rate,
but also on the history pattern of the whole consumption path.
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Consumption Habit Formation

I The consumption habit formation preference is defined as

u(x) = sup
(H,c)∈Ax

E
[∫ T

0

U(t, ct − Z(c)t)dt

]
,

where the accumulative process Z(c) is called the habit formation process
which satisfies the recursive equation

dZ(c)t = (δtct − αtZ(c)t)dt, Z(c)0 = z .

I Equivalently,

Z(c)t = ze−
∫ t

0 αv dv +

∫ t

0

δse
−

∫ t
s αv dvcsds,

where discounting factors αt and δt measure, respectively, the persistence
of the initial habits level and the intensity of consumption history. In
general, α and δ are assumed to be bounded optional processes.



Addictive Habits vs Non-addictive Habits

I Addictive Habit Formation: if U : [0,T ]× (0,+∞)→ R, i.e., it is required
that ct ≥ Z(c)t at any t ∈ [0,T ].

I Complete Market Model with Ito processes: Detemple and Zapatero
(Econometrica 1991, MF 1992), Schroder and Skiadas (RFS 2002),
Englezos and Karatzas (SICON 2009)

I General Incomplet Market Models: Yu (AAP, 2015)

I Market Models with Transaction Costs: Yu (AAP, 2017)

I Non-addictive Habit Formation: if U : [0,T ]× (−∞,+∞)→ R, the
consumption rate is allowed to fall below the standard of living process.

I Complete Market Model with Ito processes: Detemple and Karatzas (JET,
2003)

I Incomplete Market Model: None. (Motivation of our research)
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Market Model

I Let us consider d risky assets modelled by a d-dimensional locally bounded
semimartingale (S

(1)
t , . . . , S

(d)
t )t∈[0,T ] on a given filtered probability space

(Ω,F ,F = (Ft)0≤t≤T ,P) and one riskless bond S
(0)
t ≡ 1, ∀t ∈ [0,T ] which

is the numéraire asset.

I The self-financing wealth process (W x,H,c
t )t∈[0,T ] is given by

W x,H,c
t , x + (H · S)t −

∫ t

0

csds, t ∈ [0,T ].

The consumption policy ct is called x-financeable if the no-bankruptcy
condition is satisfied, i.e., W x,H,c

t ≥ 0 a.s. for t ∈ [0,T ]. Let Ax denotes
the set of x-financeable consumptions.

I M denotes the family of equivalent local martingale measures andM 6= ∅.



Market Model

I The optional decomposition theorem implies the consumption budget
constraint condition: the process (ct)t∈[0,T ] is x-financeable if and only if

E
[ ∫ T

0

ctYtdt
]
≤ x , ∀Yt ∈M.

I The primal utility maximization problem with non-addictive habit
formation is defined as

u(x ; z) , sup
c∈Ax

U(c) = sup
c∈Ax

E
[ ∫ T

0

U(t, ct − Z(c)t)dt
]
, x > 0, z > 0.

where U : [0,T ]× (−∞,∞)→ R satisfies the standard conditions.

I Although the habit formation is not addictive, the non-negative
consumption constraint ct ≥ 0 is active.



Duality Approach with Auxiliary Processes

I The path-dependent structure and potential time inconsistency may break
the standard DPP argument.

I The feedback form is not expected in incomplete market models and
special structures of the optimal consumption process are almost hopeless
from the stochastic control approach.

I The classic duality between consumption rate process c ∈ Ax and the
martingale measure density Y ∈M does not work in our model due to the
path integral term in ct − Z(c)t .

I We shall apply the duality approach using the auxiliary processes to hide
the path-dependence.



Duality Approach with Auxiliary Processes

I Step 1: Treat c̃t = ct −
∫ t

0
δse
−

∫ t
s αv dvcsds as the auxiliary primal process

and denote Ãx as the set of all c̃ for c ∈ Ax .

I Step 2: Construct the auxiliary dual process

Γt , Yt + δtE
[ ∫ T

t

e
∫ s
t (δv−αv )dvYsds

∣∣∣Ft

]
, for each Y ∈M.

Denote M̃ the set of all Γ. We will have E
[ ∫ T

0
ctYtdt

]
= E

[ ∫ T

0
c̃tΓtdt

]
.

I There are many challenges:

I Duality in which space?

I What about the extra term ze−
∫ t

0 αv dv?

I The nonnegative constraint on ct ≥ 0 mandates the path dependent
constraint

c̃t ≥ −
∫ t

0
δse

∫ t
s (δv−αv )dv c̃sds.
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Duality Approach with Auxiliary Processes

I Trade off between c and c̃: No duality for c and path-dependent
constraint on c̃.

I The auxiliary primal space can be written as

Ãx =
{
c̃ ∈ L0 : E

[ ∫ T

0

c̃tΓtdt
]
≤ x , ∀Γ ∈ M̃, and with the constraint

c̃t ≥ −
∫ t

0

δse
∫ t
s (δv−αv )dv c̃sds

}
.

I Consider the product space [0,T ]× Ω with the finite measure

d P̃ = dt × dP. Let O be the σ-algebra of optional sets relative to the
filtration (Ft)t∈[0,T ]

I The dual space M̃ is not closed in any sense.



Duality Approach with Auxiliary Processes

I Extend the space M̃ to the weak-∗ σ(ba(O, P̃),L∞(O, P̃)) closure D̃,

which is a set of bounded finitely additive measures Q̃ on O.

I For each x > 0, we have an equivalent characterization of the set Ãx ,

Ãx =
{
c̃ ∈ VM̃ :

〈
c̃, Q̃

〉
≤ x , for all Q̃ ∈ D̃ and with the constraint

c̃t ≥ −
∫ t

0

δse
∫ t
s (δv−αv )dv c̃sds

}
.

I The auxiliary primal utility maximization problem is written as

ũ(x ; z) , sup
c̃∈Ãx

U(c̃) = sup
c̃∈Ãx

E
[ ∫ T

0

U(t, c̃t − zw̃t)dt
]
,

where we denote w̃t , e
∫ t

0 (−αv )dv for all t ∈ [0,T ] as some shadow
random endowments.



Duality Approach with Auxiliary Processes

I For each fixed Lagrange multipliers y > 0 and ξ ∈ L0
+, the auxiliary dual

optimization problem is defined by

v(y , ξ) = inf
Q̃∈D̃(y)

V(Q̃; y , ξ),

where we define the functional V(Q̃; y , ξ) as

V(Q̃; y , ξ) , sup
c̃∈Ãx

(
U(c̃)−

〈
c̃ − zw̃ , Q̃

〉
+E
[ ∫ T

0

(
c̃t +

∫ t

0

δse
∫ t
s (δv−αv )dv c̃sds

)
ξtdt

])
.



Duality Approach with Auxiliary Processes

I As a matter of fact, Fubini’s theorem deduces that

E
[ ∫ T

0

(
c̃t +

∫ t

0

δse
∫ t
s (δv−αv )dv c̃sds

)
ξtdt

]
= E

[ ∫ T

0

c̃t ξ̃tdt
]
,

where ξ̃t , ξt + δtE
[ ∫ T

t
e
∫ s
t (δv−αv )dvξsds

∣∣∣Ft

]
and satisfies

ξ̃t ≥ δtE
[ ∫ T

t

ξ̃se
∫ s
t (−αv )dvds

∣∣∣Ft

]
, a.s. ∀t ∈ [0,T ].

I The dual functional can be written explicitly as

V(Q̃; y , ξ̃) = E
[ ∫ T

0

V (t,−ξ̃t + ΓQ̃
t )dt

]
+ 〈zw̃ , Q̃〉+ E

[ ∫ T

0

zw̃t ξ̃tdt
]
,

where ΓQ̃(t, ω) = dQ̃r

d P̃
and Q̃ = Q̃r + Q̃s ∈ D̃(y).



Duality Approach with Auxiliary Processes

I To build the duality between ũ(x) and v(y , ξ̃): How to choose the
stochastic Lagrange multiplier ξ̃∗?

I The answer depends on another two auxiliary problems: the unconstrained
auxiliary primal and dual problems.



Unconstrained Auxiliary Problems

I Consider the enlarged admissible space for the auxiliary primal space Ãx

where we consider all x ∈ R,

Āx =
{
c̄ :

〈
c̄, Q̃

〉
≤ x , for all Q̃ ∈ D̃

}
, x ∈ R.

The auxiliary unconstrained primal utility maximization problem is
defined as

ū(x) = sup
c̄∈Āx

E
[ ∫ T

0

U(t, c̄t − zw̃t)dt
]
, x ∈ R, z > 0.

I The auxiliary dual problem is defined by

v̄(y) = inf
Q̄∈D̃(y)

E
[ ∫ T

0

V (t, ΓQ̄
t )dt

]
− 〈zw̃ , Q̄〉,

and it admits a unique optimal solution Q̄∗ ∈ D̃(y).



Unconstrained Auxiliary Problems

I Value functions ū(x) and v̄(y) are conjugate of each other, i.e.,

v̄(y) = sup
x∈R

[ū(x)− xy ],

ū(x) = inf
y>0

[v̄(y) + xy ].

I The primal unconstrained auxiliary problem admits the unique solution
c̄∗(x) and the unique dual optimizer Q̄∗(y) and the unique primal
optimizer c̄∗(x) satisfies

c̄∗t (x) = I (t, ΓQ̄∗
t (y)) + zw̃t , P-a.s. ∀t ∈ [0,T ],

where x = −v̄ ′(y) and I (t, ·) = (U ′)−1(·). .

I Choice of ξ̃∗ using unconstrained problems:

Step 1: Construction of the endogenous stopping time

τ∗(y) , inf{t ≥ 0 : I (t, ΓQ̄∗
t (y)) + zw̃t ≥ 0} ∧ T .

Step 2: Prove the following results: for τ∗(y) ≤ t ≤ T ,

I (t, ΓQ̄∗
t (y)) + zw̃t ≥ −

∫ t

τ∗(y)

δse
∫ t
s (δv−αv )dv

(
I (s, ΓQ̄∗

s (y)) + zw̃s

)
ds,
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Constrained Auxiliary Problems

I For each y > 0, we will construct the valid stochastic Lagrange multiplier
ξ̃∗t (y) by

ξ̃∗t (y) , 0, τ∗(y) ≤ t ≤ T ,

and
ξ̃∗t (y) , ΓQ̄∗

t (y)− U ′(t,−zw̃t), 0 ≤ t ≤ τ∗(y),

which implies that

I (t,−ξ̃∗t (y) + ΓQ̄∗
t (y)) + zw̃t = 0, 0 ≤ t ≤ τ∗(y).

I Let us define the dual value function

ṽ(y) , v(y , ξ̃∗(y)),

the conjugate duality between value functions ũ(x) and ṽ(y) holds,

ũ(x) = inf
y>0

(ṽ(y) + xy),

ṽ(y) = sup
x>0

(ũ(x)− xy).



Constrained Auxiliary Problems

I For the choice of ξ̃∗t , we can show the existence of the dual optimizer
Q̃∗(y , ξ̃∗t ) (short as Q̃∗(y)) for the constrained dual problem and

Q̃∗(y) = Q̄∗(y).

I For each initial wealth x > 0, the optimal auxiliary solution c̃∗t (x) satisfies

c̃∗t (x) = I (t,−ξ̃∗t (y) + ΓQ̃∗
t (y)) + zw̃t

= I (t,−ξ̃∗t (y) + ΓQ̄∗
t (y)) + zw̃t , 0 ≤ t ≤ T .

and

c̃∗t (x) = 0, 0 ≤ t ≤ τ∗(y),

c̃∗t (x) = c̄∗t (x̄), τ∗(y) ≤ t ≤ T ,

where y = ũ′(x) and x̄ = −v̄ ′(y) and c̄∗(x̄) is the optimal solution for the
unconstrained problem starting with the initial value x̄ .



Constrained Auxiliary Problems

I For each x > 0, the optimal consumption c∗t (x) to the primal utility
maximization problem exists and is unique and

c∗t (x) = c̃∗t (x) +

∫ t

0

δse
∫ t
s (δv−αv )dv c̃∗s (x)ds, 0 ≤ t ≤ T .

In particular,

c∗t (x) = 0, 0 ≤ t ≤ τ∗(y),

c∗t (x) = c̄∗t (x̄) +

∫ t

τ∗(y)

δse
∫ t
s (δv−αv )dv c̄∗s (x̄)ds, τ∗(y) ≤ t ≤ T ,

where y = ũ′(x) and x̄ = −v̄ ′(y) and c̄∗(x̄) is the optimal solution for the
unconstrained auxiliary problem.



Constrained Auxiliary Problems

I For the unconstrained auxiliary primal optimizer c̄∗, let us go back to the
original market model and

ĉ∗t , c̄∗t +

∫ t

0

δse
∫ t
s (δv−αv )dv c̄∗s ds,

corresponds to the unconstrained optimal consumption process.

I For each x > 0, the optimal consumption process has the special structure
that c∗t (x) = 0 for 0 ≤ t ≤ τ∗(y) and

c∗t (x) = ĉ∗t (x̄)−
∫ τ∗(y)

0

δse
∫ t
s (δv−αv )dv

(
ĉ∗s (x̄)−

∫ s

0

δue
−

∫ s
u αv dv ĉ∗u (x̄)du

)
ds

for τ∗(y) ≤ t ≤ T where y = ũ′(x) and x̄ = −v̄ ′(y).



Future Work

I More explicit structures on the optimal consumption in concrete market
models. Graphic comparison on the special structures.

I Other types of non-addictive habit formation or nonlinear habit formations.

I Optimal contract theory when the agent follows the habit formation
preference.

I Market Equilibrium under non-addictive habit formation (and/or addictive
habit formation).



Thank you for the attention!



Correct Functional Space

I To be precise, D̃ is defined as the bipolar set of M̃, i.e.,

(M̃)◦ ,
{
c̃ ∈ L∞(O, P̃) :

〈
c̃, Q̃

〉
≤ 1, for all Q̃ ∈ M̃

}
,

(D̃) ,
{
Q̃ ∈ ba(O, P̃) :

〈
c̃, Q̃

〉
≤ 1, for all c̃ ∈ (M̃)◦

}
.

I However, financially speaking, the process c̃ ∈ Ãx is not necessarily in L∞!



Correct Functional Space

I Consider a subspace of L0 denoted by VM̃ whose elements satisfy

‖ c̃ ‖M̃<∞, where ‖ c̃ ‖M̃, sup
Q̃∈M̃
〈|c̃|, Q̃〉.

It is clear that ‖ · ‖M̃ defines a norm on VM̃, moreover, one can prove

that (VM̃, ‖ · ‖M̃) is a Banach space.

I At this point, for each c̃ ∈ VM̃ and constant y > 0 and Q̃ ∈ D̃(y), we
define 〈

c̃, Q̃
〉
, sup

{
〈c̃ ′, Q̃〉 : c̃ ′ ∈ L∞, c̃ ′ ≤ c̃

}
.

Then 〈c̃, Q̃〉 ≤ y ‖ c̃ ‖M̃<∞ for any Q̃ ∈ D̃(y) , yD̃. Therefore, it is

natural to consider the bilinear form between VM̃ and baM̃, where baM̃ is
defined as the linear space spanned by D̃, i.e.

baM̃ ,
{
Q̃ ∈ ba(O, P̃) : ∃y > 0,Q+,Q− ∈ D̃(y) such that Q̃ = Q+−Q−

}
.
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Correct Functional Space

I The dual norm can be defined as

‖ Q̃ ‖
baM̃

, sup
c̃∈VM̃:‖c̃‖M̃≤1

| 〈c̃, Q̃〉 | .

I We can identify baM̃ as the topological dual of VM̃ and D̃(y) becomes its

bounded subset. Moreover, the set D̃(y) is closed in the

σ(baM̃,VM̃)-topology, actually, one can show that D̃(y) is

σ(baM̃,VM̃)-compact.


