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Introduction

This work is devoted to the problem of parameter estimation in the

case of continuous time observations of inhomogeneous Poisson

processes. The Poisson process is one of the main models in the

description of the series of events in real applied problems in

optical telecommunications, biology, physics, financial mathematics

etc. Note that the intensity function entirely identifies the process

and therefore the statistical inference is concerned this function

only. We suppose that the intensity function of the observed

Poisson process is a known function which depends on some

unknown finite-dimensional parameter. We consider the problem of

this parameter estimation in the asymptotic of large samples. We

have to note that the estimation theory (parametric and non

parametric) is well developed and there exists a large number of

publications devoted to this class of problems.
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The method of moments and One-step estimation procedure in the

case of i.i.d. observations are well known too. Our goal is to apply

the method of moments to the estimation of the parameters of

inhomogeneous Poisson processes and to present a version of

One-step and Multi-step procedures with the help of some

preliminary estimators obtain on the small learning interval.

We are given n independent observations Xn = (X1, . . . , Xn) of the

Poisson processes Xj = (Xj (t) , t ∈ T) with the same intensity

function λ (ϑ, t) , t ∈ T. Here T is an interval of observations. It can

be finite, say, T = [0, T ] or infinite T = [0,∞), T = (−∞,∞). The

unknown parameter ϑ ∈ Θ, where the set Θ is an open, convex and

bounded subset of Rd.
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Recall that the increments of the Poisson process (Xj is a counting

process) on disjoint intervals are independent and for any

k = 0, 1, 2, . . . and t1 < t2

Pϑ

(
Xj (t2)−Xj (t1) = k

)
=

[∫ t2
t1

λ (ϑ, s) ds
]k

k!
exp

{∫ t2

t1

λ (ϑ, s) ds

}
.

Recall that

EϑXj (t) = Λ (ϑ, t) =

∫ t

λ (ϑ, s) ds, t ∈ T.

We have to estimate the true value of ϑ = ϑ0 by the observations

Xn and to describe the asymptotic (n → ∞) properties of

estimators. It is known that under regularity conditions the

method of moments estimators in the case of i.i.d. observations of

the random variables are consistent and asymptotically normal.
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Our goal is to introduce the method of moments estimators (MME)

in the case of observations of inhomogeneous Poisson processes.

This method of estimation was introduced by Karl Pearson in 1894

in the case of observations of the i.i.d. random variables. Then it

was extended to many other models of observations and widely

used in applied problems. It seems that till now this method was

not yet used for the estimation of the parameters of inhomogeneous

Poisson processes. The maximum likelihood estimator (MLE) ϑ̂n

(under regularity conditions) is consistent, asymptotically normal

√
n
(
ϑ̂n − ϑ0

)
=⇒ N

(
0, I (ϑ0)

−1
)

and asymptotically efficient (see, Kutoyants (1984), [9]). Here

I (ϑ0) is the Fisher information matrix

I (ϑ0) =

∫
T
λ̇ (ϑ0, t) λ̇ (ϑ0, t)

τ
λ (ϑ0, t)

−1
dt.
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Here and in the sequel dot means derivation with respect to (w.r.t.)

ϑ and Aτ means the transpose of the vector (or matrix) A.

Recall that in the regular case the following lower bound (called

Hajek-Le Cam) holds: for any estimator ϑ̄n and any ϑ0 ∈ Θ we

have

lim
ν→0

lim
n→∞

sup
|ϑ−ϑ0|<ν

nEϑ

∣∣∣I (ϑ0)
1/2 (

ϑ̄n − ϑ
)∣∣∣2 ≥ d.

This bound allows us to define the asymptotically efficient

estimator ϑ̌n as estimator satisfying the equality

lim
ν→0

lim
n→∞

sup
|ϑ−ϑ0|<ν

nEϑ

∣∣∣I (ϑ0)
1/2 (

ϑ̌n − ϑ
)∣∣∣2 = d

for all ϑ0 ∈ Θ.
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If we verify that the moments of the MLE converge uniformly on ϑ

then this proves the asymptotic efficiency of the MLE.

In the present work we introduce two classes of estimators. The

first one is the class of the method of moments estimators and the

second class is the Multi-step MLEs.

We show that the MMEs for many models of inhomogeneous

Poisson processes are easy to calculate, but these estimators as

usual are not asymptotically efficient. The MLEs are

asymptotically efficient, but their calculation is often a difficult

problem.
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The main result of this work is the introduction of the Multi-step

MLEs which are easy to calculate and which are asymptotically

efficient. These Multi-step MLEs are calculated in several steps.

For example, One-step MLE is calculated as follows. First we fix

the learning observations XN = (X1, . . . , XN ), where N =
[
nδ

]
with δ ∈

(
1
2 , 1

)
. Here [a] is the entier part of a. By the observations

XN we construct the MME ϑ∗
N and then with the help of it we

introduce the One-step MLE by the equality

ϑ⋆
n = ϑ∗

N +
1

n
I (ϑ∗

N )
−1

n∑
j=N+1

∫
T

λ̇ (ϑ∗
N , t)

λ (ϑ∗
N , t)

[dXj (t)− λ (ϑ∗
N , t) dt] .

It is shown that this estimator is asymptotically normal

√
n (ϑ⋆

n − ϑ0) =⇒ N
(
0, I (ϑ0)

−1
)

and is asymptotically efficient.
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Method of Moments for Poisson processes

Let us construct the method of moments estimator in the case of

observations of inhomogeneous Poisson process. We have n

independent observations Xn = (X1, ..., Xn) of the Poisson

processes Xj = (Xj(t), t ∈ T) with the intensity function

(λ (θ, t) , t ∈ T). The unknown parameter θ ∈ Θ ⊂ Rd. Here Θ is an

open, convex, bounded set.

In the construction of the method of moments estimator we follow

the same way as in the construction of MME in the case of i.i.d.

random variables.

9



Introduce the vector-function g (s) = (g1 (s) , ..., gd (s)), t ∈ T and

the vector of integrals I(d) = (I1, . . . , Id), where

Il =

∫
T
gl (s) dX1 (s) , l = 1, . . . , d.

We have

EθI
(d) =

∫
T
g (s)λ (θ, s) ds.

Let us denote M (ϑ) = EθI
(d) and suppose that the function g (·) is

such that the equation M (ϑ) = a for all ϑ ∈ Θ has a unique

solution ϑ = M−1 (a) = H (a) . Here H (a) is the inverse function

for M (·).
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The method of moments estimator ϑ∗
n is defined by the equation

ϑ∗
n = H (an) ,

where

an =
1

n

n∑
j=1

∫
T
g (s) dXj (s)

Introduce the Regularity conditions R0 :

• For any ν > 0 and any ϑ0 ∈ Θ

inf
|ϑ−ϑ0|>ν

|M (ϑ)−M (ϑ0)| > 0.

• The vector-function H (·) is continuously differentiable.

11



Introduce the matrix

D (ϑ) =
∂H (ϑ)

∂ϑ
G (ϑ)

∂H (ϑ)

∂ϑ

T

.

Here the matrices(
∂H (ϑ)

∂ϑ

)
lk

=
∂Hl (ϑ)

∂ϑk
, G (ϑ)l,k =

∫
T
gl (s) gk (s)λ (ϑ, s) ds.

Theorem 1 Suppose that the vector-function g (·) is such, that the

regularity conditions R0 are fulfilled. Then the MME ϑ∗
n is

consistent and asymptotically normal

√
n (ϑ∗

n − ϑ0) =⇒ N (0,D (ϑ0)) . (1)
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Proof. By the Law of Large Numbers

al,n =
1

n

n∑
j=1

∫
T
gl (s) dXj (s) −→

∫
T
gl (s)λ (ϑ0, s) ds, l = 1, ..., d

and hence by the well-known Continuous Mapping Theorem

H (an) −→ H (a0) = ϑ0. Here we put a0 = M (ϑ0). To show

asymptotic normality we write

√
n (ϑ∗

n − ϑ0) =
√
n (H (an)−H (a0)) =

√
n (H (a0 + bnηn)−H (a0))

where bn = n−1/2 and the vector

ηn =
1√
n

n∑
j=1

∫
T
g (s) [dXj (s)− λ (ϑ0, s) ds] .
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By the Central Limit Theorem

ηn =⇒ N (0,G (ϑ)) .

The asymptotic normality (1) now follows from this convergence

and the presentation

√
n (ϑ∗

n − ϑ0) =
∂H (ϑ)

∂ϑ
ηn (1 + o (1)) .

Recall that the vector-function H (a) is continuously differentiable.
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Example 1. Suppose that the intensity function is

λ (θ, t) =

d∑
l=1

θlhl (t) + λ0, t ∈ T.

Introduce the vector-function g (·) and the corresponding integrals

I(d). The vector M (ϑ) = Åϑ+ λ0G, where

Åkl =

∫
T
gk (t)hl (t) dt, Gk =

∫
T
gk (t) dt

in obvious notations. Hence we can write

ϑ = Å−1 [M (ϑ)− λ0G] = Å−1 [a− λ0G] = H (a) .
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Therefore the MME ϑ∗
n is given by the equality

ϑ∗
n = Å−1 [an − λ0G] = Å−1 1

n

n∑
j=1

∫
T
g (t) [dXj (t)− λ0dt] . (2)

This estimator by the Theorem 1 is consistent and asymptotically

normal. To simplify its calculation we can take such functions g (·)
that the matrix Å became diagonal.
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Example 2. Suppose that the inhomogeneous Poisson processes

X(n) are observed on the time interval T = [0,∞) and have the

intensity function

λ (ϑ, t) =
tβ−1αβ

Γ (β)
exp (−αt) , t ≥ 0,

i.e., we have Poisson processes with the Gamma intensity function.

The unknown parameter is ϑ = (α, β) . We know, that

M1 (ϑ) =

∫ ∞

0

t λ (ϑ, t) dt =
β

α
,

M2 (ϑ) =

∫ ∞

0

t2λ (ϑ, t) dt =
β (β + 1)

α2
.

Hence, if we take g (t) = (g1 (t) , g2 (t)) =
(
t, t2

)
, then the system

M (ϑ) = a has the unique solution

α =
a1

a2 − a21
, β =

a21
a2 − a21

.
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Therefore the MME ϑ∗
n = (α∗

n, β
∗
n) is

α∗
n =

1
n

∑n
j=1

∫∞
0

tdXj (t)(
1
n

∑n
j=1

∫∞
0

t2dXj (t)−
(

1
n

∑n
j=1

∫∞
0

tdXj (t)
)2

) , (3)

β∗
n =

(
1
n

∑n
j=1

∫∞
0

tdXj (t)
)2

(
1
n

∑n
j=1

∫∞
0

t2dXj (t)−
(

1
n

∑n
j=1

∫∞
0

tdXj (t)
)2

) . (4)

This estimator is consistent and asymptotically normal.
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The similar example can be considered and in the case of

observations on T = (−∞,+∞) and the Gaussian intensity

function with ϑ =
(
α, σ2

)
:

λ (ϑ, t) =
1√
2πσ2

exp

{
− (t− α)

2

2σ2

}
, t ∈ R.

Further examples and the convergence of moments of these

estimators can be found in Kutoyants (Introduction to statistics of

Poisson Processes (2018). To appear.
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One-Step MLE

The One-step MLE was introduced by Fisher (1925). This

One-step procedure allows to improved a consistent estimator ϑ̄n

up to asymptotically efficient (One-step MLE) ϑ⋆
n. We consider the

similar construction in the case of inhomogeneous Poisson

processes. Suppose that the observations Xn = (X1, ..., Xn) are

Poisson processes with the intensity function λ(ϑ, t), t ∈ T.

Condition P0. We have a (preliminary) estimator ϑ̄n, which is

consistent and such that
√
n
(
ϑ̄n − ϑ0

)
is bounded in probability.
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Introduce the learning observations XN = (X1, ..., XN ), N =
[
nδ

]
,

δ ∈
(
1
2 , 1

)
and the One-step MLE

ϑ⋆
n = ϑ̄N +

I
(
ϑ̄N

)−1

n

n∑
j=N+1

∫
T

λ̇
(
ϑ̄N , t

)
λ
(
ϑ̄N , t

) [dXj (t)− λ
(
ϑ̄N , t

)
dt
]
.

Here ϑ̄N is the preliminary estimator constructed by the first N

observations.

Regularity conditions L0:

• The function ℓ (ϑ, t) = lnλ (ϑ, t) has three continuous bounded

derivatives. w.r.t. ϑ

• The Fisher information matrix I (ϑ) is uniformly on ϑ ∈ Θ non

degenerated:

inf
ϑ∈Θ

inf
|µ|=1

µτ I (ϑ)µ > 0.

Here µ ∈ Rd.
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Theorem 2 Suppose that the conditions P0 and L0 are fulfilled.

Then the One-step MLE ϑ⋆
n is asymptotically normal

√
n (ϑ⋆

n − ϑ0) =⇒ N
(
0, I (ϑ0)

−1
)
.

We have the equality

√
n (ϑ⋆

n − ϑ0) =
√
n
(
ϑ̄N − ϑ0

)
+

+ I
(
ϑ̄N

)−1 1√
n

n∑
j=N+1

∫
T
ℓ̇
(
ϑ̄N , t

)
[dXj (t)− λ (ϑ0, t) dt]

+ I
(
ϑ̄N

)−1 n−N√
n

∫
T
ℓ̇
(
ϑ̄N , t

) [
λ (ϑ0, t)− λ

(
ϑ̄N , t

)]
dt.
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As ϑ̄N −→ ϑ0 we can write

I
(
ϑ̄N

)−1 1√
n

n∑
j=N+1

∫
T
ℓ̇
(
ϑ̄N , t

)
[dXj (t)− λ (ϑ0, t) dt]

= I (ϑ0)
−1 1√

n

n∑
j=N+1

∫
T
ℓ̇ (ϑ0, t) [dXj (t)− λ (ϑ0, t) dt] + o (1) .

By the Central Limit Theorem

I (ϑ0)
−1

√
n

n∑
j=N+1

∫
T
ℓ̇ (ϑ0, t) [dXj (t)− λ (ϑ0, t) dt] =⇒ N

(
0, I (ϑ0)

−1
)
.
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Let us consider the remainder

Rn =
√
n
(
ϑ̄N − ϑ0

)
+ I

(
ϑ̄N

)−1 n−N√
n

∫
T
ℓ̇
(
ϑ̄N , t

) [
λ (ϑ0, t)− λ

(
ϑ̄N , t

)]
dt

=
√
n
(
ϑ̄N − ϑ0

)
I
(
ϑ̄N

)−1
[
I
(
ϑ̄N

)
−
∫
T
λ̇(ϑ̄N , t)τ ℓ̇

(
ϑ̄N , t

)
dt

]
+
√
n
(
ϑ̄N − ϑ0

)
O

(
N

n

)
+O

(√
n
(
ϑ̄N − ϑ0

)2)
= o (1) ,
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where we used the equality

I
(
ϑ̄N

)
=

∫
T
λ̇(ϑ̄N , t)τ ℓ̇

(
ϑ̄N , t

)
dt

and the Taylor expansion at the point ϑ̄N :

λ (ϑ0, t)− λ
(
ϑ̄N , t

)
= −

∫ 1

0

λ̇
(
ϑ̄N + s

(
ϑ̄N − ϑ0

)
, t
)τ (

ϑ̄N − ϑ0

)
ds

= −λ̇
(
ϑ̄N , t

)τ (
ϑ̄N − ϑ0

)
+O

((
ϑ̄N − ϑ0

)2)
.

Remind that
√
nO

((
ϑ̄N − ϑ0

)2) ∼
√
nO

(
n−δ

)
= o (1).

Therefore we obtained the representation

√
n (ϑ⋆

n − ϑ0) =
I (ϑ0)

−1

√
n

n∑
j=N+1

∫
T
ℓ̇ (ϑ0, t) [dXj (t)− λ (ϑ0, t) dt] + o (1)

which proves the theorem.
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Remark 1. If we suppose that the moments of the preliminary

estimator are bounded, say,

Eϑ0

∣∣ϑ̄n − ϑ0

∣∣p ≤ C

where p ≥ 2 and C > 0 does not depend on n, then the presented

proof allows to verify that the moments of the One-step MLE are

bounded too and that ϑ⋆
n is asymptotically efficient.
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In all examples below the MLEs have no explicit expression.

Example 1. Suppose that the intensity function is

λ (ϑ, t) =
d∑

l=1

ϑlhl (t) + λ0, t ∈ T

and ϑ∗
n is the MME. The Fisher information matrix is

I (ϑ)lk =

∫
T

hl (t)hk (t)

h (t)
τ
ϑ+ λ0

dt, l, k = 1, . . . , d

and the One-step MLE in this case is

ϑ⋆
n = ϑ∗

N

+
I (ϑ∗

N )
−1

n

n∑
j=N+1

∫
T

h (t)

h (t)
τ
ϑ∗
N + λ0

[dXj (t)− h (t)
τ
ϑ∗
ndt− λ0dt] .

Here N =
[
nδ

]
and δ ∈

(
1
2 , 1

)
. By the Theorem 2 this estimator is

consistent and asymptotically normal.
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Example 2. Suppose that the intensity function is

λ (ϑ, t) =
tβ−1αβ exp (−αt)

Γ (β)
, t ≥ 0,

where the unknown parameter is ϑ = (α, β). Once more we have a

situation, where the explicit calculation of the MLE is impossible.

The preliminary estimator can be the MME ϑ∗
n = (α∗

n, β
∗
n) (see (3)

and (4)).
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The vector l̇ (ϑ, t) =
(

β
α − t, ln (αt)− Γ̇(β)

Γ(β)

)
and the Fisher

information matrix I (ϑ) = (Ilk (ϑ))2×2 is

I11 (ϑ) =
β

α2
, I12 (ϑ) = − 1

α
, I22 (ϑ) =

Γ̈ (β) Γ (β)− Γ̇ (β)
2

Γ (β)
2 .

Hence the One-step MLE is

ϑ⋆
n = ϑ∗

N + I (ϑ∗
N )

−1 1

n

n∑
j=N+1

∫
T
l̇ (ϑ∗

N , t) [dXj (t)− λ (ϑ∗
N , t) dt]

and this estimators is asymptotically normal with the limit

covariance matrix I (ϑ0)
−1

.
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One-step MLE-process

Suppose that we have the same model of observations of n

independent inhomogeneous Poisson processes: Xn = (X1, ..., Xn)

with the intensity function λ(ϑ, t), t ∈ T, where ϑ is unknown

parameter. Our goal is to construct an estimator process

ϑ⋆
n =

(
ϑ⋆
k,n, k = 1, . . . , n

)
, where the estimator ϑ⋆

k,n satisfies the

following conditions

1. The estimator ϑ⋆
k,n is based on the first k observations X(k).

2. The calculation of this estimator has to be relatively simple.

3. The estimator ϑ⋆
k,n is asymptotically efficient.
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Note that the MLE ϑ̂k,n defined by the relations

V
(
ϑ̂k,n, X

k
)
= sup

ϑ∈Θ
V
(
ϑ,Xk

)
, k = 1, ..., n (5)

satisfies the conditions (1) and (3), but not (2). The likelihood

ratio function V
(
ϑ,Xk

)
, ϑ ∈ Θ is

V
(
ϑ,Xk

)
= exp


k∑

j=1

∫
T
lnλ (ϑ, t) dXj (t)− k

∫
T
[λ (ϑ, t)− 1] dt

 .

Remind that the solutions of the equations (5) in the case of non

linear intensity functions λ(ϑ, ·) can be computationally difficult

problems. This is typical situation of ”on-line” estimation.
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The construction of such estimator-process is very close to the

given above construction of the One-step MLE. Introduce the same

learning observations XN = (X1, ..., XN ), where N = [nδ], with

δ ∈
(
1
2 , 1

)
and suppose that we have a preliminary estimator ϑ̄N

such that
√
N

(
ϑ̄N − ϑ0

)
is bounded in probability (condition P0).

The One-step MLE-process is

ϑ⋆
k,n = ϑ̄N + I

(
ϑ̄N

)−1 1

k

k∑
j=N+1

∫
T
ℓ̇
(
ϑ̄N , t

) [
dXj (t)− λ

(
ϑ̄N , t

)
dt
]
,

where k = N + 1, ..., n.
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Theorem 3 Suppose that the conditions P0 and L0 are fulfilled.

Then the One-step MLE-process ϑ⋆
n =

(
ϑ∗
k,n, k = N + 1, ..., n

)
is

consistent and asymptotically normal

√
k
(
ϑ⋆
k,n − ϑ0

)
=⇒ N

(
0, I (ϑ0)

−1
)

where we put k = [sn]. Here s ∈ (0, 1].

Proof. There is no need to present a new proof because it is a

slight modification of the given above proof of the Theorem 2.
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Two-step MLE-process

The one step MLE-process presented in the preceding section allows

us to calculate the values ϑ⋆
k,n for k = N + 1, ..., n, where N =

[
nδ

]
with δ ∈ ( 12 , 1]. Therefore we have no estimators for k = 1, ..., N .

It is interesting to reduce the learning interval and to start the

estimation process earlier. Let us see how it can be done with the

learning interval XN = (X1, . . . , XN ) with N =
[
nδ

]
and

δ ∈
(

1
3 ,

1
2

]
. We suppose that a preliminary estimator ϑ̄N is given.
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Then we define the second preliminary estimator

ϑ̄k,n = ϑ̄N + I
(
ϑ̄N

)−1 1

k

k∑
j=N+1

∫
T
ℓ̇
(
ϑ̄N , t

) [
dXj (t)− λ

(
ϑ̄N , t

)
dt
]
,

and the Two-step MLE-process is defined by the relation

ϑ⋆⋆
k,n = ϑ̄k,n+I

(
ϑ̄N

)−1 1

k

k∑
j=N+1

∫
T
ℓ̇
(
ϑ̄N , t

) [
dXj (t)− λ

(
ϑ̄k,n, t

)
dt
]
,

where k = N + 1, ..., n.
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Let us show that it is asymptotically normal

√
k
(
ϑ⋆⋆
k,n − ϑ0

)
=⇒ N

(
0, I (ϑ0)

−1
)
.

Here k = [sn] and s ∈ (0, 1]. We have

√
k
(
ϑ⋆⋆
k,n − ϑ0

)
=

√
k
(
ϑ̄k,n − ϑ0

)
+

+ I
(
ϑ̄N

)−1 1

k

k∑
j=N+1

∫
T
ℓ̇
(
ϑ̄N , t

)
[dXj (t)− λ (ϑ0, t) dt]

+ I
(
ϑ̄N

)−1 (k −N)

k

∫
T
ℓ̇
(
ϑ̄N , t

) [
λ (ϑ0, t)− λ

(
ϑ̄k,n, t

)]
dt.

We can write for some γ > 0, which we chose later
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nγ
(
ϑ̄k,n − ϑ0

)
= nγ

(
ϑ̄N − ϑ0

)
+ I

(
ϑ̄N

)−1 nγ

k

k∑
j=N+1

∫
T
ℓ̇
(
ϑ̄N , t

)
[dXj (t)− λ (ϑ0, t) dt]

+ I
(
ϑ̄N

)−1 nγ (k −N)

k

∫
T
ℓ̇
(
ϑ̄N , t

) [
λ (ϑ0, t)− λ

(
ϑ̄N , t

)]
dt

= nγ
(
ϑ̄N − ϑ0

) [
J −

(
1− N

k

)
I
(
ϑ̄N

)−1
∫
T
ℓ̇
(
ϑ̄N , t

)
λ(ϑ̃, t)dt

]
+ I

(
ϑ̄N

)−1 nγ

k

k∑
j=N+1

∫
T
ℓ̇
(
ϑ̄N , t

)
[dXj (t)− λ (ϑ0, t) dt]

= O
(
nγ

∣∣ϑ̄N − ϑ0

∣∣2)+O

(
N

k

)
+ I

(
ϑ̄N

)−1 nγ

k

k∑
j=N+1

∫
T
ℓ̇
(
ϑ̄N , t

)
[dXj (t)− λ (ϑ0, t) dt] .

37



If we take γ < δ then we have

nγn−δ
(
n

δ
2

∣∣ϑ̄N − ϑ0

)∣∣∣2 −→ 0.

Further, as γ < δ ≤ 1
2 we have

nγ

k

k∑
j=N+1

∫
T
ℓ̇
(
ϑ̄N , t

)
[dXj (t)− λ (ϑ0, t) dt]

=
nγ− 1

2

√
sk

k∑
j=N+1

∫
T
ℓ̇
(
ϑ̄N , t

)
[dXj (t)− λ (ϑ0, t) dt] = o

(
nγ− 1

2

)
→ 0.

Hence for γ < δ

nγ
(
ϑ̄k,n − ϑ0

)
−→ 0.
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Therefore

√
k
(
ϑ⋆⋆
k,n − ϑ0

)
= O

(√
k
∣∣ϑ̄k,n − ϑ0

∣∣ ∣∣ϑ̄N − ϑ0

∣∣)
+ I

(
ϑ̄k,n

)−1 1√
k

k∑
j=N+1

∫
T
ℓ̇
(
ϑ̄N , t

)
[dXj (t)− λ (ϑ0, t) dt] .

We see that if we take 1
2 − γ − δ

2 < 0 then

√
k
∣∣ϑ̄k,n − ϑ0

∣∣ ∣∣ϑ̄N − ϑ0

∣∣
= n

1
2n−γn− δ

2

(
nγ

∣∣ϑ̄k,n − ϑ0

∣∣)n δ
2

∣∣ϑ̄N − ϑ0

∣∣ → 0
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Therefore if δ ∈
(
1
3 ,

1
2

)
, then we can take such γ, that γ < δ and

γ > 1−δ
2 . Finally we obtain

√
k
(
ϑ⋆⋆
k,n − ϑ0

)
=

I (ϑ0)
−1

√
k

k∑
j=N+1

∫
T
ℓ̇ (ϑ0, t) [dXj (t)− λ (ϑ0, t) dt] + o (1)

=⇒ N
(
0, I (ϑ0)

−1
)
.

Therefore we proved the following theorem

Theorem 4 Let the conditions P0 and L0 be fulfilled. Then the

Two-step MLE-process
(
ϑ⋆⋆
k,n, k = N + 1, ..., n

)
is asymptotically

normal √
k
(
ϑ∗∗
k,n − ϑ0

)
=⇒ N

(
0, I (ϑ0)

−1
)
.

Here k = [sn].
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Example 4. Suppose that the intensity function of the observed

inhomogeneous Poisson process is

λ (ϑ, t) = A sin (2πt+ ϑ)− λ0, 0 ≤ t ≤ 1

where ϑ ∈ Θ = (c1, c2), 0 < α < β < 2π and A < λ0. Let us take

g (t) = cos (2πt) and note that

M (ϑ) =

∫ 1

0

g (t)λ (ϑ, t) dt =
A

2
cos (ϑ) , ϑ = arccos

(
2M (ϑ)

A

)
.

The MME is

ϑ∗
n = arccos

 2

An

n∑
j=1

∫ 1

0

cos (2πt) dXj (t)

 .
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The Fisher information

I =
∫ 1

0

A2 cos2 (2πt)

A sin (2πt) + λ0
dt

does not depend on ϑ. Let us take N =
[
n

4
9

]
and introduce the

Two-step MLE-process as follows (k = N + 1, . . . , n,)

ϑ̄k,n = ϑ∗
N +

1

Ik

k∑
j=N+1

∫ 1

0

A cos (2πt+ ϑ∗
N )

A sin (2πt+ ϑ∗
N ) + λ0

dXj (t) ,

ϑ∗∗
k,n = ϑ̄k,n +

1

Ik

k∑
j=N+1

∫ 1

0

A cos (2πt+ ϑ∗
N )

A sin (2πt+ ϑ∗
N ) + λ0

dXj (t)

− k −N

Ik

∫ 1

0

[A cos (2πt+ ϑ∗
N )]

[
A sin

(
2πt+ ϑ̄k,n

)
+ λ0

]
A sin (2πt+ ϑ∗

N ) + λ0
dt
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Thank you for your attention !!
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