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Suppose X = (X 1
s ,X

2
s , ...,X

n
s )s≥0 is a strong Markov process.

We aim to find the “value” function V ∗ = V ∗(·) and the optimal
stopping time τ∗, such that

V ∗(x1, x2, ...xn) = sup
τ∈M

Ex1,x2,...,xn

(
e−qτg(X 1

τ ,X
2
τ , ...,X

n
τ )
)

= Ex1,x2,...,xn

(
e−qτ

∗
g(X 1

τ∗ ,X
2
τ∗ , ...,X

n
τ∗)
)
,
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Theorem

Assume that there exists an upper semicontinuous function f ,
f : Rn → R and S ⊂ Rn such that

(a) f (x) ≥ 0 for x ∈ S, and f (x) < 0 for x /∈ S.

(b) Ex

(
sup0≤t≤eq f (Xt)

)
= g(x) for x ∈ S,

Ex

(
sup0≤t≤eq f (Xt)

)
≥ g(x) for x /∈ S,

(eq is and exponentially distributed random variable.)

Then the value function V ∗ for our optimal stopping problem is

V ∗(x) = Ex

(
sup

0≤t≤eq

(
f (Xt) 1{Xt∈S}

))

and the optimal stopping time τ∗ = inf {t ≥ 0 : Xt ∈ S}.
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Ok, we should find f to serve as an indicator where to stop.

S = {x : f (x) ≥ 0}.

The value function V ∗ is

V ∗(x) = Ex

(
sup

0≤t≤eq

(
f (Xt) 1{Xt∈S}

))

the optimal stopping time τ∗ = inf {t ≥ 0 : Xt ∈ S}.

But how do we find f ?
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Consider X = (Xs)s≥0 = (X 1
s ,X

2
s , ...,X

n
s )s≥0, and f : Rn → R.

Define Dt = {y : y = Xs , t ≤ s ≤ eq}.

Why do we need it?
Now we can write

sup
t≤s≤eq

f (Xs) = f

(
argmax
y∈Dt

f (y)

)
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Definition

The Appell integral transform with respect to random variable
ν = (ν1, ..., νn) of function g = g(·) is defined by

Aν{g}(y1, ..., yn) =

∫
Rn

F−1{g}(u1, ..., un)
e iu1y1+...iunyn

Ee iu1ν1+...+iunνn
du1...dun

=

∫
Rn

F−1{g}(u)
e iuy

Ee iuν
du,

where F−1{g} is an inverse Fourier transform.
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Averaging property of Appell Integral Transform

Lemma

EAν{g}(x + ν) = g(x).

Indeed,

EAν{g}(x + ν) = E

∫
Rn

F−1{g}(u)
eu(x+ν)

Eeuν
du

=

∫
Rn

F−1{g}(u)E
eu(x+ν)

Eeuν
du

=

∫
Rn

F−1{g}(u)
euxEeuν

Eeuν
du

= g(x)
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The averaging property of Appell Integral transform means we can
find f in the case of Lévy processes.

Let

η = argmax
y∈Dτ+

f (y)− x ,

f (y) = Aη{g}(y).

Here τ+ = inf {t ≥ 0 : x + Xt ∈ S}, S = {y : f (y) ≥ 0},
Dτ+ = {y : y = x + Xs , τ

+ ≤ s ≤ eq}.
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Ex

(
sup0≤t≤eq f (Xt)

)
= g(x) for x ∈ S ,

E

(
sup

0≤t≤eq
f (x + Xt)

)
= E

(
sup

τ+≤t≤eq
f (x + Xt)

)
= E (f (x + η))

= EAη{g}(x + η) = g(x).

Ex

(
sup0≤t≤eq f (Xt)

)
≥ g(x) for x /∈ S ,

Ex

(
sup

0≤t≤eq
f (Xt)

)
≥ Ex

(
sup

τ+≤t≤eq
f (Xt)

)
= EAη{g}(x + η) = g(x).
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Theorem

When X is a Levy process, the value function is given by

V ∗(x) = Ex

(
sup

0≤t≤eq
Aη{g}(x + Xt) 1{x+Xt∈S}

)
and the optimal stopping time τ∗ = inf {t ≥ 0 : x + Xt ∈ S},
where S = {y : Aη{g}(y) > 0}.

But we still have a problem. To construct f we need to know η,
and to construct η we need to know f .
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But still we have a problem. To consruct f we need to know η,
and to contruct η we need to know f .

There is a special case in dimension 1, when g is a monotone
function.
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Properties

Appell polynomials Qν
n (y) are traditionally defined for one variable

as

Qν
n (y) =

dn

dun

(
euy

E (euν)

)∣∣∣∣
u=0

(5.1)

in other words, euy

E(euν) is the generating function for Appell
polynomials

euy

E(euν)
=
∞∑
n=0

un

n!
Qν

n (y). (5.2)

QXt
n (Xt) are martingales, if Xt is a Lévy process,

d
dyQ

ν
n (y) = nQν

n−1(y),

Appell polynomials are Bell polynomials in cumulants.
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e iuy

E(e iuν)
=
∞∑
n=0

(iu)n

n!
Qν

n (y). (5.3)

We can generalize the construction into multiple dimensions, by
taking partial derivatives of

e iu1y1+...+iunyn

E (e iu1ν1+...+iu1ν1)
.
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Proposition

The Appell integral transform of the monomial yn is the
corresponding Appell polynomial Qν

n (y).

Proof. By F−1{g} we denote the inverse Fourier transform for
some function g = g(·). By δ(n)(u) we denote the n′th derivative
of the delta function. More precisely,∫ ∞

−∞
δ(n)(u)φ(u)du = (−1)nφ(n)(0) (5.4)
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Note, that the inverse Fourier transform of yn is the n′th derivative
of the delta function,

F−1{yn}(u) = (i)nδ(n)(u).

Indeed,∫ ∞
−∞
F−1{yn}(u)e iuydu =

∫ ∞
−∞

inδ(n)(u)e iuydu

= (−i)n dn

dun
(
e iuy
)∣∣∣∣

u=0

= yn.
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Therefore,

Qν
yn(y) =

∫ ∞
−∞
F−1{yn}(u)

e iuy

Ee iuν
du

=

∫ ∞
−∞

inδ(n)(u)
e iuy

Ee iuν
du =

= (−i)n dn

dun

(
e iuy

E (e iuν)

)∣∣∣∣
u=0

= Qν
n (y)

4
Thus with a slight abuse of notation we write for simplicity Qν

n (y)
instead of Qν

yn(y).
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Note, that the inverse Fourier transform of yn11 ...y
nk
k is the

corresponding derivative of the delta function,

F−1{yn}(u) = in1+...+nk δ(n1,...,nk )(u).

Indeed,∫
Rn

F−1{yn11 ...y
nk
k }(u)e iuydu =

∫
Rn

in1+...+nk δ(n1,...,nk )(u)e iuydu

= (−i)n1+...+nk
dn
1

du1
...

dn
k

duk

(
e iuy
)∣∣∣∣

u=0

= yn11 ...y
nk
k .
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Therefore,

Aν{yn11 ...y
nk
k }(y) =

∫
Rn

F−1{yn11 ...y
nk
k }(u)

e iuy

Ee iuν
du

=

∫
Rn

in1+...nk δ(n1,...,nk )(u)
e iuy

Ee iuν
du =

=
dn

dun

(
e iuy

E (e iuν)

)∣∣∣∣
u=0

4
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Properties

Let the reward function g be given by linear combination of
exponentials

g(y) =
n∑

k=0

cke
rky .

One can notice that the inverse Fourier transform of erky is the
delta function at −irk ,

F−1{erky}(u) = δ(u + irk).

Indeed,∫ ∞
−∞
F−1{erky}(u)e iuydu =

∫ ∞
−∞

δ(u+irk)e iuydu = e iuy
∣∣
u=−irk

= erky .
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Proposition

Let g(y) =
∑n

k=0 cke
rky . Then the Appell integral transform of g

is a sum of the corresponding Esscher transforms, i.e.

Aν{g}(y) = Qν
g (y) =

n∑
k=0

ck
erky

Eerkν
.

By analogy we extend it to the multidimensional case.

Proposition

Let g(y) = er1y1+...rkyk . Then the Appell integral transform of g is

Aν{g}(y) =
er1y1+...rkyk

Eer1ν1+...rkνk
.
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Let the reward function g be given by an exponential polynomial

g(y) =
n∑

k=0

cky
kerky .

Note that the inverse Fourier transform of ykerky is the k ′th
derivative of the delta function at −irk ,

F−1{ykerky}(u) = (−1)kδ(k)(u + irk).

Indeed,∫ ∞
−∞
F−1{ykerky}(u)e iuydu =

∫ ∞
−∞

(−1)kδ(k)(u + irk)e iuydu

=
dk

duk
(
e iuy
)∣∣∣∣

u=−irk
= ykerky .
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Denote the k-th derivative in u of euy

Eeuν at u = a by Qν
k (y ; a):

Qν
k (y ; a) :=

dk

duk

(
euy

Eeuν

)∣∣∣∣
u=a

(5.5)

Proposition

Let g(y) =
∑n

k=0 cky
kerky . Then the Appell integral transform of

g is a

Aν{g}(y) = Qν
g (y) =

n∑
k=0

ckQ
ν
k (y ; rk).
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%subsubsectionThe martingale property of AXt{g}(Xt) for a Lévy
process X .
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The linearity of Aν-transform follows from linearity of the inverse
Fourier transform.

Lemma

Let Appel integral transforms exist for the real functions f and g.
Then

Aν{c1f + c2g}(y) = c1Aν{f }(y) + c2Aν{g}(y), (5.6)

where c1 and c2 are some constants.
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