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Abstract

We consider a model of describing the evolution of the capital
of a venture company selling innovations when it invests its
reserve into a risky asset with the price given by a geometric
Lévy process.

We find the exact asymptotic of the ruin probabilities. Under
some natural conditions it decays as a power function. The
rate of decay is a positive root of equation determined by
characteristics of the price process. When the price follows a
gBm the results are reduced to those of our previous work
where we used the method of differential equations assuming
exponentially distributed jumps.

Our proofs are based on the asymptotic theory for renewal
equations, in particular on a very recent result by Guivarc’h
and Le Page.
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Exit probabilities for linear equations

R = (Rt)t≥0, P = (Pt)t≥0 are independent Lévy processes,
P0 = R0 = 0, ∆R > −1.

X = X u describes the capital evolution ; it is given by the
linear equation dX = X−dR + dP, X0 = u, i.e.

Xt = u + X− · Rt + Pt = u +

∫
]0,t]

Xs−dRs + Pt , u ∈ R+.

Since [P,R] = 0 we have the analog of the Cauchy formula

X = E(R)(u + E−1
− (R) · P) = E(R)(u − Y ),

where the Doléans exponential E(R) is the price process,
E(R) := 1 + E−(R) · R and Y := −E−1

− (R) · P.

Ruin time : τu := inf{t : X u
t ≤ 0}, the exit time from ]0,∞[.

Ruin probability : Ψ(u) := P(τu <∞).
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Lévy triplets

(a, σ2,Π), (aP , σ
2
P ,ΠP) are the Lévy triplets of R, P, i.e.

Rt = at + σWt + h ∗ (µ− ν)t + h̄ ∗ µt ,

compensator ν(dt, dx) = dtΠ(dx) with Π(|x |2 ∧ 1) <∞,
truncation function h(x) := xI{|x |≤1}, h̄(x) := xI{|x |>1}.

The process P has a similar representation with W P , µP , νP .

To exclude trivial or known cases we work under the following

Assumption Π(]−∞,−1] ; σ2 and Π do not vanish
simultaneously, P is not a subordinator.

Stochastic exponential can be written as the usual one :

X u
t = eVt (u − Yt),

Yt := −
∫

]0,t]
E−1
s− (R)dPs = −

∫
]0,t]

e−Vs−dPs .
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Main result

The Lévy process V (the log price) has the form

Vt = at − (1/2)σ2t + σWt + h ∗ (µ− ν)t + (ln(1 + x)− h) ∗ µt .
and has the triplet (aV , σ

2,Πϕ−1) where ϕ : x 7→ ln(1 + x),

aV = a− (1/2)σ2 + Π(h(ln(1 + x))− h).

For r.v. V1 the cumulant generating function

H(q) := lnE e−qV1 = −aV q +
σ2

2
q2 + Π

(
e−q ln(1+x) − 1 + qh(ln(1 + x))

)
.

Put q := inf{q ≤ 0: H(q) <∞}, q̄ := sup{q ≥ 0: H(q) <∞}.

Theorem

Suppose that H has a root β > 0 laying in int domH and
Π(|h̄|β) <∞. If the law L(VT ) is non-arithmetic for some T > 0,
then Ψ(u) = O(u−β) as u →∞.
If, moreover, ΠP(]−∞, 0[) = 0, then Ψ(u) ∼ C∞u−β for C∞ > 0.
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Reduction

So, X u
t = eVt (u − Yt). Obviously, τu = inf{t ≥ 0 : Yt ≥ u}. Put

G (u) := P(Y∞ > u).

Lemma

If Yt → Y∞ a.s. where Y∞ is finite and unbounded from above,
then for all u > 0

G (u) ≤ Ψ(u) =
G (u)

E (G (Xτu) | τu <∞)
≤ G (u)

G (0)
. (1)

In particular, if ΠP(]−∞, 0]) = 0, then Ψ(u) = G (u)/G (0).

Proof. Let τ be a stopping time, ξ be a Fτ -measurable r.v.,

Yτ,∞ :=

{
− limN→∞

∫
]τ,τ+N] e−(Vt−−Vτ )dPt , τ <∞,

0, τ =∞.
is well defined.
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On the set {τ <∞}

Yτ,∞ = eVτ (Y∞ − Yτ ) = Xτ + eVτ (Y∞ − u).

Since the Lévy process Y starts afresh at τ , the conditional
distribution of Yτ,∞ given (τ, ξ) = (t, x) ∈ R+ × R is the same as
L(Y∞). It follows that

P (Yτ,∞ > ξ, τ <∞) = EG (ξ) I{τ<∞}.

Thus, if P(τ <∞) > 0, then

P (Yτ,∞ > ξ, τ <∞) = E (G (ξ) | τ <∞) P(τ <∞) .

Noting that Ψ(u) := P(τu <∞) ≥ P(Y∞ > u) > 0, we get that

G (u) = P (Y∞ > u, τu <∞) = P (Yτu ,∞ > Xτu , τ
u <∞)

= E (G (Xτu) | τu <∞) P(τu <∞).

The result follows since Xτu ≤ 0 on the set {τu <∞}. In the case
where ΠP(]−∞, 0]) = 0, the process X u crosses zero in a
continuous way, i.e. Xτu = 0 on this set.
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Reduction to distributional equations

Put

Mn := e−(Vn−Vn−1), Qn := −
∫

]n−1,n]
e−(Vt−Vn−1)dPt .

Clearly, L(M1,Q1) = L(Mn,Qn) and

Yn = −e−Vn−1

∫
]0,n]

e−(Vt−Vn−1)dPt = Q1 + M1Q2 + M1M2Q3 + . . .

Thus, Yn = Q1 + M1Yn−1,1 where

Yn−1,1 := Q2 + M2Q3 + . . .M2 . . .Mn−1Qn.

Suppose that Yn → Y∞. Then Y∞ = Q1 + M1Y∞,1 a.s. Hence,

Y∞
d
= Q + M Y∞ , Y∞ independent of (M,Q).
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Implicit renewal theory

Let M > 0 be such that L(ln M) is non-arithmetic and

EMβ = 1 , EMβ (ln M)+ <∞ for some β > 0.

Then lnEM ∈ [−∞, 0[ and κ := EMβ ln M ∈]0,∞[.

Lemma (Goldie, 1991)

Let M satisfies the conditions above, E |Q|β <∞. Then the

distributional equation Y∞
d
= Q + M Y∞ ,Y∞ independent of (M,Q) has

a unique solution Y∞ and

lim
u→∞

uβ P(Y∞ > u) = C+ :=
1

β κ
E
(
((Q + MY∞)+)β − ((MY∞)+)β

)
.

Lemma (Guivarc’h, Le Page, 2015 ; Buraczewski, Damek, 2016)

C+ > 0 ⇔ Y∞ unbounded from above.
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Moments of the maximal function Y ∗1 := supt≤1 |Yt |

Lemma

If ΠP(|h̄|p) + E supt≤1 e−pVt <∞ for p > 0, then EY ∗p1 <∞.

The proof follows from the Novikov inequalities for the integral
I = g ∗ (µP − νP) where g 2 ∗ νP1 <∞. In dependence of the
parameter α ∈ [1, 2] they have the following form :

EI ∗p1 ≤ Cp,α

{
E
(
|g |α ∗ νP1

)p/α
, ∀ p ∈]0, α],

E
(
|g |α ∗ νP1

)p/α
+ E |g |p ∗ νP1 , ∀ p ∈ [α,∞[.

If H(q) <∞, then the process mt(q) := e−qVt−tH(q) is a
martingale and E e−qVt = etH(q), t ∈ [0, 1]. From this it is easy to
deduce that

E sup
t≤1

e−pVt <∞ ∀ p ∈]q, q̄[.
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Convergence of Y

The convergence Yt as t →∞ can be easily established under very
weak assumptions.

Proposition

If there is p > 0 such that H(p) < 0, and ΠP(|h̄|p) <∞, then Yt

converge a.s. to a finite r.v. Y∞ unbounded from above and
solving the distributional equation

Y∞
d
= Y1 + M1 Y∞ , Y∞ independent of (M1,Y1).

Proof. We assume wlg that p < 1 and H(p+) 6=∞. For j ≥ 2

Yj − Yj−1 = M1 . . .Mj−1Qj , .

Since ρ := EMp
1 = eH(p) < 1 and EM1...Mj−1|Qj | = ρjE|Y1|p, we have

E
∑

j≥1 |Yj − Yj−1|p <∞. Hence,
∑

j≥1 |Yj − Yj−1|p <∞ a.s. But then∑
j≥1 |Yj − Yj−1| <∞ a.s. and the sequence Yn converges to some finite

random variable Y∞.
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Put

∆n := sup
n−1≤v≤n

∣∣∣∣∣
∫

]n−1,v ]
e−Vs− dPs

∣∣∣∣∣ , n ≥ 1.

Note that

E∆p
n = E

n−1∏
j=1

Mp
j sup

n−1≤v≤n

∣∣∣∣∣
∫

]n−1,v ]

e−(Vs−−Vn−1) dPs

∣∣∣∣∣
p

= ρn−1 EY ∗p1 <∞.

For any ε > 0 we get using the Chebyshev inequality that∑
n≥1

P(∆n > ε) ≤ ε−pEY ∗p1

∑
n≥1

ρn−1 <∞.

By the Borel–Cantelli lemma ∆n(ω) ≤ ε for all n ≥ n0(ω) for each
ω except a null-set. This implies the convergence Yt → Y∞ a.s.
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Let us consider the sequence

Y1,n := Q2 + M2Q3 + · · ·+ M2 . . .MnQn+1

converging a.s. to a random variable Y1,∞ distributed as Y∞.
Passing to the limit in the obvious identity Yn = Q1 + M1Y1,n−1

we obtain that Y∞ = Q1 + M1Y1,∞. For finite n the random
variables Y1,n and (M1,Q1) are independent, L(Y1,n) = L(Yn).
Hence, Y1,∞ and (M1,Q1) are independent, L(Y1,∞) = L(Y∞)
and L(Y∞) = L(Q1 + M1Y1,∞).

It remains to check that Y∞ is unbounded from above.
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Ruin with probability one

Proposition

Suppose that EM−δ1 < 1 and EM−δ1 |Q1|δ <∞ for some δ ∈]0, 1[
and Q1 is unbounded from above. Then Ψ(u) ≡ 1.

More specific conditions of the ruin almost surely in terms of
triplets :

Theorem

Suppose that 0 ∈ int domH and ΠP(|h̄|ε) <∞ for some ε > 0. If
aV + Π(h̄(ln(1 + x))) ≤ 0, then Ψ(u) ≡ 1.
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